Nuprl Lemma : rless-witness-property

[x,y:ℝ]. ∀[p:x < y].  ((x ≤ (y (r1/r(rless-witness(x;y;p))))) ∧ ((x (r1/r(rless-witness(x;y;p)))) ≤ y))


Proof




Definitions occuring in Statement :  rless-witness: rless-witness(x;y;p) rdiv: (x/y) rleq: x ≤ y rless: x < y rsub: y radd: b int-to-real: r(n) real: uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B guard: {T} nat_plus: + uimplies: supposing a rneq: x ≠ y or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top rless-witness: rless-witness(x;y;p) so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) cand: c∧ B sq_type: SQType(T) itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B squash: T
Lemmas referenced :  rless-witness_wf rless_wf real_wf rleq_wf rsub_wf rdiv_wf int-to-real_wf nat_plus_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf radd_wf less_than'_wf squash_wf rless-implies-rleq all_wf exists_wf subtype_base_sq set_subtype_base less_than_wf int_subtype_base rleq-implies-rleq real_term_polynomial itermSubtract_wf itermAdd_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma req-iff-rsub-is-0 sq_stable__and sq_stable__rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename sqequalRule independent_isectElimination inrFormation dependent_functionElimination because_Cache productElimination independent_functionElimination lambdaFormation applyLambdaEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll minusEquality instantiate functionEquality cumulativity independent_pairEquality axiomEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[p:x  <  y].
    ((x  \mleq{}  (y  -  (r1/r(rless-witness(x;y;p)))))  \mwedge{}  ((x  +  (r1/r(rless-witness(x;y;p))))  \mleq{}  y))



Date html generated: 2017_10_03-AM-09_06_22
Last ObjectModification: 2017_07_28-AM-07_42_14

Theory : reals


Home Index