Nuprl Lemma : rless-witness-property
∀[x,y:ℝ]. ∀[p:x < y].  ((x ≤ (y - (r1/r(rless-witness(x;y;p))))) ∧ ((x + (r1/r(rless-witness(x;y;p)))) ≤ y))
Proof
Definitions occuring in Statement : 
rless-witness: rless-witness(x;y;p)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rsub: x - y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rless-witness: rless-witness(x;y;p)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
squash: ↓T
Lemmas referenced : 
rless-witness_wf, 
rless_wf, 
real_wf, 
rleq_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
nat_plus_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
radd_wf, 
less_than'_wf, 
squash_wf, 
rless-implies-rleq, 
all_wf, 
exists_wf, 
subtype_base_sq, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
rleq-implies-rleq, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
req-iff-rsub-is-0, 
sq_stable__and, 
sq_stable__rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_isectElimination, 
inrFormation, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
applyLambdaEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
minusEquality, 
instantiate, 
functionEquality, 
cumulativity, 
independent_pairEquality, 
axiomEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[p:x  <  y].
    ((x  \mleq{}  (y  -  (r1/r(rless-witness(x;y;p)))))  \mwedge{}  ((x  +  (r1/r(rless-witness(x;y;p))))  \mleq{}  y))
Date html generated:
2017_10_03-AM-09_06_22
Last ObjectModification:
2017_07_28-AM-07_42_14
Theory : reals
Home
Index