Nuprl Lemma : rnexp-minus-one

n:ℕ(r(-1)^n if (n rem =z 0) then r1 else r(-1) fi )


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y int-to-real: r(n) nat: ifthenelse: if then else fi  eq_int: (i =z j) all: x:A. B[x] remainder: rem m minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False prop: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B int_nzero: -o nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) nat: ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_wf rnexp_wf int-to-real_wf exp_wf2 eq_int_wf subtype_base_sq int_subtype_base equal-wf-base true_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int req-int exp-equal-one modulus-is-rem nequal_wf equal-wf-T-base exp-equal-minusone rem_bounds_1 less_than_wf nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_formula_prop_wf req_functionality rnexp-int req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality minusEquality natural_numberEquality remainderEquality because_Cache addLevel instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed unionElimination equalityElimination sqequalRule productElimination dependent_pairFormation promote_hyp inrFormation independent_pairFormation dependent_set_memberEquality imageMemberEquality setElimination rename imageElimination lambdaEquality int_eqEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}n:\mBbbN{}.  (r(-1)\^{}n  =  if  (n  rem  2  =\msubz{}  0)  then  r1  else  r(-1)  fi  )



Date html generated: 2017_10_03-AM-08_32_27
Last ObjectModification: 2017_07_28-AM-07_27_43

Theory : reals


Home Index