Nuprl Lemma : exp-equal-minusone

[x:ℤ]. ∀[n:ℕ].  uiff(x^n (-1) ∈ ℤ;(x (-1) ∈ ℤ) ∧ ((n mod 2) 1 ∈ ℤ))


Proof




Definitions occuring in Statement :  exp: i^n modulus: mod n nat: uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} top: Top ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False le: A ≤ B iff: ⇐⇒ Q not: ¬A rev_implies:  Q subtract: m ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b
Lemmas referenced :  neg_assert_of_eq_int assert-bnot bool_cases_sqequal int_formula_prop_le_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformless_wf itermVar_wf intformnot_wf intformand_wf mod_bounds assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf bool_cases not_wf bnot_wf assert_wf eq_int_wf exp-minusone exp-one assoced_elim neg_assoced iff_weakening_equal true_wf squash_wf assoced_wf minus-zero minus-add add-commutes condition-implies-le le-add-cancel zero-add add-zero add-associates add_functionality_wrt_le not-equal-2 not-lt-2 false_wf decidable__lt exp-assoced-one int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma itermConstant_wf intformeq_wf satisfiable-full-omega-tt nat_properties exp0_lemma subtype_base_sq decidable__equal_int nat_wf int-subtype-int_mod le_wf int_mod_wf subtype_rel_set less_than_wf modulus_wf_int_mod equal-wf-T-base int_subtype_base equal-wf-base exp_wf2 equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality lemma_by_obid isectElimination intEquality hypothesisEquality minusEquality natural_numberEquality productEquality applyEquality baseClosed because_Cache dependent_set_memberEquality imageMemberEquality lambdaEquality independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination setElimination rename unionElimination instantiate cumulativity independent_functionElimination voidElimination voidEquality dependent_pairFormation computeAll lambdaFormation addEquality imageElimination universeEquality equalityEquality promote_hyp impliesFunctionality int_eqEquality equalityElimination

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    uiff(x\^{}n  =  (-1);(x  =  (-1))  \mwedge{}  ((n  mod  2)  =  1))



Date html generated: 2016_05_15-PM-04_46_29
Last ObjectModification: 2016_01_16-AM-11_24_22

Theory : general


Home Index