Nuprl Lemma : exp-equal-one

x:ℤ. ∀n:ℕ.  (x^n 1 ∈ ℤ ⇐⇒ (x 1 ∈ ℤ) ∨ (n 0 ∈ ℤ) ∨ ((x (-1) ∈ ℤ) ∧ ((n mod 2) 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  exp: i^n modulus: mod n nat: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q or: P ∨ Q subtype_rel: A ⊆B nat: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a decidable: Dec(P) sq_type: SQType(T) guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False le: A ≤ B not: ¬A uiff: uiff(P;Q) subtract: m cand: c∧ B ifthenelse: if then else fi  bfalse: ff btrue: tt bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  neg_assert_of_eq_int assert-bnot bool_cases_sqequal exp0_lemma exp-one assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf bool_cases eq_int_wf iff_weakening_equal exp-minusone int_term_value_var_lemma int_formula_prop_and_lemma itermVar_wf intformand_wf subtype_rel-equal assoced_elim assoced_weakening minus-zero minus-add add-commutes condition-implies-le le-add-cancel zero-add add-zero add-associates add_functionality_wrt_le not-equal-2 not-lt-2 false_wf decidable__lt exp-assoced-one int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt nat_properties subtype_base_sq decidable__equal_int nat_wf int-subtype-int_mod le_wf int_mod_wf subtype_rel_set less_than_wf modulus_wf_int_mod equal-wf-T-base int_subtype_base equal-wf-base or_wf exp_wf2 equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis natural_numberEquality unionElimination applyEquality sqequalRule baseClosed because_Cache setElimination rename productEquality dependent_set_memberEquality introduction imageMemberEquality lambdaEquality independent_isectElimination dependent_functionElimination instantiate cumulativity independent_functionElimination inrFormation inlFormation equalityTransitivity equalitySymmetry dependent_pairFormation isect_memberEquality voidElimination voidEquality computeAll productElimination addEquality minusEquality setEquality int_eqEquality equalityEquality equalityUniverse levelHypothesis promote_hyp impliesFunctionality equalityElimination

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (x\^{}n  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (n  =  0)  \mvee{}  ((x  =  (-1))  \mwedge{}  ((n  mod  2)  =  0)))



Date html generated: 2016_05_15-PM-04_46_17
Last ObjectModification: 2016_01_16-AM-11_23_50

Theory : general


Home Index