Nuprl Lemma : rpoly-deriv_wf
∀n:ℕ. ∀a:ℕn + 1 ⟶ ℝ. ∀x:ℝ.  (rpoly-deriv(n;a;x) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rpoly-deriv: rpoly-deriv(n;a;x), 
real: ℝ, 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
rpoly-deriv: rpoly-deriv(n;a;x), 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
subtract: n - m, 
sq_type: SQType(T), 
guard: {T}
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int-to-real_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
rpolynomial_wf, 
subtract_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
le_wf, 
poly-deriv_wf, 
subtract-add-cancel, 
subtype_base_sq, 
int_subtype_base, 
add-commutes, 
add-associates, 
add-swap, 
equal_wf, 
real_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
intEquality, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
instantiate, 
cumulativity, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.    (rpoly-deriv(n;a;x)  \mmember{}  \mBbbR{})
Date html generated:
2017_10_03-PM-00_14_54
Last ObjectModification:
2017_07_28-AM-08_37_24
Theory : reals
Home
Index