Nuprl Lemma : rpoly-deriv_wf

n:ℕ. ∀a:ℕ1 ⟶ ℝ. ∀x:ℝ.  (rpoly-deriv(n;a;x) ∈ ℝ)


Proof




Definitions occuring in Statement :  rpoly-deriv: rpoly-deriv(n;a;x) real: int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rpoly-deriv: rpoly-deriv(n;a;x) uall: [x:A]. B[x] nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtract: m sq_type: SQType(T) guard: {T}
Lemmas referenced :  eq_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int int-to-real_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot rpolynomial_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_wf poly-deriv_wf subtract-add-cancel subtype_base_sq int_subtype_base add-commutes add-associates add-swap equal_wf real_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed intEquality hypothesisEquality independent_functionElimination productElimination independent_isectElimination independent_pairFormation impliesFunctionality dependent_set_memberEquality dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll addEquality instantiate cumulativity functionEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.    (rpoly-deriv(n;a;x)  \mmember{}  \mBbbR{})



Date html generated: 2017_10_03-PM-00_14_54
Last ObjectModification: 2017_07_28-AM-08_37_24

Theory : reals


Home Index