Nuprl Lemma : arctangent_functionality
∀[x,y:ℝ].  arctangent(x) = arctangent(y) supposing x = y
Proof
Definitions occuring in Statement : 
arctangent: arctangent(x), 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
true: True, 
rge: x ≥ y, 
guard: {T}, 
arctangent: arctangent(x), 
rfun: I ⟶ℝ, 
rneq: x ≠ y, 
or: P ∨ Q, 
ifun: ifun(f;I), 
top: Top, 
real-fun: real-fun(f;a;b), 
rev_uimplies: rev_uimplies(P;Q), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
rnexp2-nonneg, 
real_wf, 
int-to-real_wf, 
radd_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
trivial-rless-radd, 
rless-int, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
req_witness, 
arctangent_wf, 
req_wf, 
rdiv_wf, 
rless_wf, 
i-member_wf, 
rccint_wf, 
rmin_wf, 
rmax_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_functionality, 
rdiv_functionality, 
req_weakening, 
radd_functionality, 
rnexp_functionality, 
set_wf, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
integral_functionality_endpoints
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
isect_memberEquality, 
lambdaEquality, 
setElimination, 
rename, 
inrFormation, 
setEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    arctangent(x)  =  arctangent(y)  supposing  x  =  y
Date html generated:
2018_05_22-PM-03_02_02
Last ObjectModification:
2017_10_21-PM-11_20_17
Theory : reals_2
Home
Index