Nuprl Lemma : integral-additive-lemma
∀[m,M:ℝ].
  ∀[f:{f:[m, M] ⟶ℝ| ifun(f;[m, M])} ]. ∀[a,b:{x:ℝ| x ∈ [m, M]} ].
    (a_∫-b f[x] dx = (∫ f[x] dx on [m, b] - ∫ f[x] dx on [m, a])) 
  supposing m ≤ M
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx, 
Riemann-integral: ∫ f[x] dx on [a, b], 
ifun: ifun(f;I), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
rsub: x - y, 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
integral: a_∫-b f[x] dx, 
member: t ∈ T, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
prop: ℙ, 
squash: ↓T, 
label: ...$L... t, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
rev_implies: P ⇐ Q, 
top: Top, 
sq_stable: SqStable(P), 
so_lambda: λ2x.t[x], 
i-member: r ∈ I, 
rccint: [l, u], 
cand: A c∧ B, 
or: P ∨ Q, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
i-member_wf, 
rccint_wf, 
real_wf, 
ifun_wf, 
squash_wf, 
icompact_wf, 
rfun_wf, 
interval_wf, 
eta_conv, 
rccint-icompact, 
iff_weakening_equal, 
sq_stable__req, 
rsub_wf, 
ifun_subtype_3, 
rleq_weakening_equal, 
member_rccint_lemma, 
sq_stable__rleq, 
Riemann-integral_wf, 
subtype_rel_sets, 
rleq_wf, 
set_wf, 
rmin_ub, 
rmin_wf, 
rmin-rleq, 
rmin_lb, 
Riemann-integral-additive, 
radd_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
int-to-real_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
req-iff-rsub-is-0, 
req_functionality, 
req_weakening, 
rsub_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
setEquality, 
imageElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
independent_pairFormation, 
inlFormation, 
natural_numberEquality, 
computeAll, 
int_eqEquality, 
intEquality
Latex:
\mforall{}[m,M:\mBbbR{}].
    \mforall{}[f:\{f:[m,  M]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[m,  M])\}  ].  \mforall{}[a,b:\{x:\mBbbR{}|  x  \mmember{}  [m,  M]\}  ].
        (a\_\mint{}\msupminus{}b  f[x]  dx  =  (\mint{}  f[x]  dx  on  [m,  b]  -  \mint{}  f[x]  dx  on  [m,  a])) 
    supposing  m  \mleq{}  M
Date html generated:
2017_10_04-PM-10_15_51
Last ObjectModification:
2017_07_28-AM-08_47_49
Theory : reals_2
Home
Index