Nuprl Lemma : integral-int-rmul
∀[a,b:ℝ]. ∀[f:{f:[rmin(a;b), rmax(a;b)] ⟶ℝ| ifun(f;[rmin(a;b), rmax(a;b)])} ]. ∀[c:ℤ].
  (a_∫-b c * f[x] dx = c * a_∫-b f[x] dx)
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx
, 
ifun: ifun(f;I)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
int-rmul: k1 * a
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
prop: ℙ
, 
ifun: ifun(f;I)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
real-fun: real-fun(f;a;b)
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
label: ...$L... t
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
req_functionality, 
int-rmul_wf, 
i-member_wf, 
rccint_wf, 
rmin_wf, 
rmax_wf, 
left_endpoint_rccint_lemma, 
istype-void, 
right_endpoint_rccint_lemma, 
int-rmul_functionality, 
req_weakening, 
req_wf, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
integral_wf, 
rmul_wf, 
int-to-real_wf, 
rmul_functionality, 
eta_conv, 
real_wf, 
equal_wf, 
rfun_wf, 
iff_weakening_equal, 
integral_functionality, 
int-rmul-req, 
member_rccint_lemma, 
rleq_wf, 
integral-rmul-const, 
req_witness, 
squash_wf, 
icompact_wf, 
interval_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
sqequalRule, 
lambdaEquality_alt, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
setIsType, 
because_Cache, 
universeIsType, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
lambdaFormation_alt, 
independent_functionElimination, 
independent_isectElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
setEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation, 
productIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
isectIsTypeImplies
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:\{f:[rmin(a;b),  rmax(a;b)]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[rmin(a;b),  rmax(a;b)])\}  ].  \mforall{}[c:\mBbbZ{}].
    (a\_\mint{}\msupminus{}b  c  *  f[x]  dx  =  c  *  a\_\mint{}\msupminus{}b  f[x]  dx)
Date html generated:
2019_10_30-AM-11_38_48
Last ObjectModification:
2019_01_01-PM-04_05_25
Theory : reals_2
Home
Index