Nuprl Lemma : rtan-double
∀[x:{x:ℝ| x ∈ (-(π/2), π/2)} ]. rtan(r(2) * x) = (r(2) * rtan(x)/r1 - rtan(x)^2) supposing r(2) * x ∈ (-(π/2), π/2)
Proof
Definitions occuring in Statement : 
rtan: rtan(x)
, 
halfpi: π/2
, 
rooint: (l, u)
, 
i-member: r ∈ I
, 
rdiv: (x/y)
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
rminus: -(x)
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
iff: P 
⇐⇒ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
req_witness, 
rtan_wf, 
rmul_wf, 
int-to-real_wf, 
i-member_wf, 
rooint_wf, 
rminus_wf, 
halfpi_wf, 
rdiv_wf, 
rsub_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rless_wf, 
set_wf, 
real_wf, 
member_rooint_lemma, 
rless-implies-rless, 
radd_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
rtan-radd-denom-positive, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
real_term_value_add_lemma, 
rless_functionality, 
req_weakening, 
rsub_functionality, 
req_inversion, 
rnexp2, 
rtan-radd, 
req_wf, 
rless_transitivity1, 
rleq_weakening, 
rless_transitivity2, 
uiff_transitivity, 
req_functionality, 
rtan_functionality, 
rneq_functionality, 
rdiv_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
voidElimination, 
voidEquality, 
productElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
productEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  (-(\mpi{}/2),  \mpi{}/2)\}  ]
    rtan(r(2)  *  x)  =  (r(2)  *  rtan(x)/r1  -  rtan(x)\^{}2)  supposing  r(2)  *  x  \mmember{}  (-(\mpi{}/2),  \mpi{}/2)
Date html generated:
2018_05_22-PM-03_00_31
Last ObjectModification:
2017_10_19-PM-06_28_02
Theory : reals_2
Home
Index