Nuprl Lemma : rtan_functionality_wrt_rleq
∀[x,y:{x:ℝ| x ∈ (-(π/2), π/2)} ].  rtan(x) ≤ rtan(y) supposing x ≤ y
Proof
Definitions occuring in Statement : 
rtan: rtan(x), 
halfpi: π/2, 
rooint: (l, u), 
i-member: r ∈ I, 
rleq: x ≤ y, 
rminus: -(x), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
all: ∀x:A. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
real: ℝ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rfun: I ⟶ℝ, 
nat: ℕ, 
less_than': less_than'(a;b), 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
increasing-on-interval: f[x] increasing for x ∈ I, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
rcos-positive, 
less_than'_wf, 
rsub_wf, 
rtan_wf, 
i-member_wf, 
rooint_wf, 
rminus_wf, 
halfpi_wf, 
real_wf, 
nat_plus_wf, 
rleq_wf, 
set_wf, 
rnexp-positive, 
rcos_wf, 
derivative-implies-increasing, 
halfpi-interval-proper, 
rdiv_wf, 
int-to-real_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rless_wf, 
derivative-rtan, 
function-is-continuous, 
req_functionality, 
rdiv_functionality, 
req_weakening, 
rnexp_functionality, 
rcos_functionality, 
req_wf, 
rmul_preserves_rleq, 
rmul_wf, 
rmul-zero-both, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
rleq-int, 
rleq_functionality, 
req_transitivity, 
rmul-rinv, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
lambdaFormation, 
independent_functionElimination, 
independent_pairFormation, 
independent_isectElimination, 
inrFormation, 
setEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidEquality
Latex:
\mforall{}[x,y:\{x:\mBbbR{}|  x  \mmember{}  (-(\mpi{}/2),  \mpi{}/2)\}  ].    rtan(x)  \mleq{}  rtan(y)  supposing  x  \mleq{}  y
Date html generated:
2018_05_22-PM-02_59_36
Last ObjectModification:
2017_10_22-PM-00_38_33
Theory : reals_2
Home
Index