Nuprl Lemma : assert-eq-seg-nat-seq

[n,m:finite-nat-seq()].  (↑eq-seg-nat-seq(n;m) ⇐⇒ m ∈ finite-nat-seq())


Proof




Definitions occuring in Statement :  eq-seg-nat-seq: eq-seg-nat-seq(n;m) finite-nat-seq: finite-nat-seq() assert: b uall: [x:A]. B[x] iff: ⇐⇒ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq-seg-nat-seq: eq-seg-nat-seq(n;m) finite-nat-seq: finite-nat-seq() pi1: fst(t) pi2: snd(t) iff: ⇐⇒ Q and: P ∧ Q implies:  Q nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A rev_implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k sq_type: SQType(T) uiff: uiff(P;Q) bfalse: ff band: p ∧b q ifthenelse: if then else fi 
Lemmas referenced :  istype-le subtype_rel_function int_seg_wf nat_wf int_seg_subtype istype-false subtype_rel_self nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf set_subtype_base le_wf int_subtype_base int_seg_properties istype-less_than intformand_wf itermConstant_wf int_formula_prop_and_lemma int_term_value_constant_lemma subtype_rel_dep_function le_weakening zero-le-nat intformeq_wf int_formula_prop_eq_lemma subtype_base_sq subtype_rel_wf assert-init-seg-nat-seq2 istype-assert init-seg-nat-seq_wf iff_weakening_uiff assert_wf bool_cases bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf bfalse_wf assert_of_band assert_witness eq-seg-nat-seq_wf finite-nat-seq_wf decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin sqequalRule independent_pairFormation Error :lambdaFormation_alt,  hypothesis Error :productIsType,  extract_by_obid isectElimination setElimination rename hypothesisEquality Error :equalityIstype,  Error :inhabitedIsType,  applyEquality natural_numberEquality because_Cache independent_isectElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  hyp_replacement equalitySymmetry Error :dependent_set_memberEquality_alt,  equalityTransitivity applyLambdaEquality baseApply closedConclusion baseClosed intEquality sqequalBase Error :functionExtensionality_alt,  instantiate cumulativity independent_pairEquality Error :functionIsType,  Error :dependent_pairEquality_alt,  promote_hyp productEquality axiomEquality Error :functionIsTypeImplies,  Error :isectIsTypeImplies

Latex:
\mforall{}[n,m:finite-nat-seq()].    (\muparrow{}eq-seg-nat-seq(n;m)  \mLeftarrow{}{}\mRightarrow{}  n  =  m)



Date html generated: 2019_06_20-PM-03_04_17
Last ObjectModification: 2018_11_25-PM-05_58_00

Theory : continuity


Home Index