Nuprl Lemma : assert-eq-seg-nat-seq
∀[n,m:finite-nat-seq()].  (↑eq-seg-nat-seq(n;m) 
⇐⇒ n = m ∈ finite-nat-seq())
Proof
Definitions occuring in Statement : 
eq-seg-nat-seq: eq-seg-nat-seq(n;m)
, 
finite-nat-seq: finite-nat-seq()
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq-seg-nat-seq: eq-seg-nat-seq(n;m)
, 
finite-nat-seq: finite-nat-seq()
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
istype-le, 
subtype_rel_function, 
int_seg_wf, 
nat_wf, 
int_seg_subtype, 
istype-false, 
subtype_rel_self, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
int_seg_properties, 
istype-less_than, 
intformand_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_term_value_constant_lemma, 
subtype_rel_dep_function, 
le_weakening, 
zero-le-nat, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_base_sq, 
subtype_rel_wf, 
assert-init-seg-nat-seq2, 
istype-assert, 
init-seg-nat-seq_wf, 
iff_weakening_uiff, 
assert_wf, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
bfalse_wf, 
assert_of_band, 
assert_witness, 
eq-seg-nat-seq_wf, 
finite-nat-seq_wf, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
hypothesis, 
Error :productIsType, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
Error :equalityIstype, 
Error :inhabitedIsType, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
hyp_replacement, 
equalitySymmetry, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
sqequalBase, 
Error :functionExtensionality_alt, 
instantiate, 
cumulativity, 
independent_pairEquality, 
Error :functionIsType, 
Error :dependent_pairEquality_alt, 
promote_hyp, 
productEquality, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :isectIsTypeImplies
Latex:
\mforall{}[n,m:finite-nat-seq()].    (\muparrow{}eq-seg-nat-seq(n;m)  \mLeftarrow{}{}\mRightarrow{}  n  =  m)
Date html generated:
2019_06_20-PM-03_04_17
Last ObjectModification:
2018_11_25-PM-05_58_00
Theory : continuity
Home
Index