Nuprl Lemma : abs-val_wf
∀[x:ℤ]. (|x| ∈ ℕ)
Proof
Definitions occuring in Statement : 
abs-val: |x|, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
abs-val: |x|, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
nat: ℕ, 
prop: ℙ, 
bfalse: ff, 
guard: {T}, 
top: Top, 
subtract: n - m, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
true: True, 
decidable: Dec(P), 
or: P ∨ Q
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_weakening2, 
minus-one-mul, 
le_wf, 
le_int_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
not-lt-2, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
minus-one-mul-top, 
minus-zero, 
add-zero, 
one-mul, 
zero-add, 
add-commutes, 
add-mul-special, 
zero-mul, 
less-iff-le, 
false_wf, 
add-associates, 
add-swap, 
omega-shadow, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
minusEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
intEquality, 
multiplyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
independent_pairFormation, 
imageMemberEquality
Latex:
\mforall{}[x:\mBbbZ{}].  (|x|  \mmember{}  \mBbbN{})
Date html generated:
2019_06_20-PM-00_25_54
Last ObjectModification:
2018_08_07-PM-04_55_34
Theory : int_1
Home
Index