Nuprl Lemma : insert-int-comm
∀T:Type. ∀a,b:T.  ((T ⊆r ℤ) 
⇒ (∀L:T List. (insert-int(b;insert-int(a;L)) = insert-int(a;insert-int(b;L)) ∈ (T List))))
Proof
Definitions occuring in Statement : 
insert-int: insert-int(x;l)
, 
list: T List
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
false: False
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
not: ¬A
, 
squash: ↓T
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
list_induction, 
all_wf, 
equal-wf-base, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
insert_int_nil_lemma, 
nil_wf, 
insert-int-cons, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
less_than_transitivity2, 
le_weakening2, 
less_than_irreflexivity, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
cons_wf, 
squash_wf, 
true_wf, 
decidable__equal_int, 
false_wf, 
not-equal-2, 
not-lt-2, 
add_functionality_wrt_le, 
add-associates, 
add-commutes, 
le-add-cancel, 
add-swap, 
insert-int_wf, 
subtype_rel_self, 
iff_weakening_equal, 
less-iff-le, 
subtype_rel_list, 
subtype_rel_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
imageElimination, 
universeEquality, 
independent_pairFormation, 
addEquality, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}T:Type.  \mforall{}a,b:T.
    ((T  \msubseteq{}r  \mBbbZ{})  {}\mRightarrow{}  (\mforall{}L:T  List.  (insert-int(b;insert-int(a;L))  =  insert-int(a;insert-int(b;L)))))
Date html generated:
2017_09_29-PM-05_48_41
Last ObjectModification:
2017_07_26-PM-01_36_58
Theory : list_0
Home
Index