Nuprl Lemma : insert-int-comm

T:Type. ∀a,b:T.  ((T ⊆r ℤ (∀L:T List. (insert-int(b;insert-int(a;L)) insert-int(a;insert-int(b;L)) ∈ (T List))))


Proof




Definitions occuring in Statement :  insert-int: insert-int(x;l) list: List subtype_rel: A ⊆B all: x:A. B[x] implies:  Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q top: Top prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  false: False guard: {T} bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b not: ¬A squash: T decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  list_induction all_wf equal-wf-base list_wf list_subtype_base int_subtype_base insert_int_nil_lemma nil_wf insert-int-cons lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int less_than_transitivity2 le_weakening2 less_than_irreflexivity eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf cons_wf squash_wf true_wf decidable__equal_int false_wf not-equal-2 not-lt-2 add_functionality_wrt_le add-associates add-commutes le-add-cancel add-swap insert-int_wf subtype_rel_self iff_weakening_equal less-iff-le subtype_rel_list subtype_rel_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation thin introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality hypothesis baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp instantiate cumulativity imageElimination universeEquality independent_pairFormation addEquality natural_numberEquality imageMemberEquality

Latex:
\mforall{}T:Type.  \mforall{}a,b:T.
    ((T  \msubseteq{}r  \mBbbZ{})  {}\mRightarrow{}  (\mforall{}L:T  List.  (insert-int(b;insert-int(a;L))  =  insert-int(a;insert-int(b;L)))))



Date html generated: 2017_09_29-PM-05_48_41
Last ObjectModification: 2017_07_26-PM-01_36_58

Theory : list_0


Home Index