Nuprl Lemma : filter_sublist

[T:Type]. ∀P:T ⟶ 𝔹. ∀L_1,L_2:T List.  (L_1 ⊆ L_2  filter(P;L_1) ⊆ filter(P;L_2))


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: top: Top bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  list_induction all_wf list_wf sublist_wf filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf nil_wf filter_nil_lemma filter_cons_lemma eqtt_to_assert nil-sublist eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cons_wf sublist_nil ifthenelse_wf cons_sublist_nil cons_sublist_cons equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity assert_of_bnot sublist_transitivity sublist_weakening sublist_tl2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality applyEquality because_Cache setEquality independent_isectElimination setElimination rename independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp instantiate cumulativity universeEquality baseClosed hyp_replacement applyLambdaEquality inlFormation independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L$_{1}$,L$_{2}$:T  List.    (L$_\000C{1}$  \msubseteq{}  L$_{2}$  {}\mRightarrow{}  filter(P;L$_{1}$)  \msubseteq{}  filter(P;L\000C$_{2}$))



Date html generated: 2019_06_20-PM-01_24_23
Last ObjectModification: 2018_09_17-PM-05_53_42

Theory : list_1


Home Index