Nuprl Lemma : list-set-type3

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ ℙ].  L ∈ {x:T| P[x]}  List supposing ∃L':{x:T| P[x]}  List. (L L' ∈ (T List))


Proof




Definitions occuring in Statement :  list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) uiff: uiff(P;Q)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf exists_wf list_wf equal_wf less_than_transitivity1 less_than_irreflexivity equal-wf-T-base nat_wf colength_wf_list list-cases nil_wf equal-wf-base-T subtype_rel_list product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int set_wf cons_wf null_nil_lemma btrue_wf and_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse cons_one_one reduce_hd_cons_lemma hd_wf squash_wf length_wf length_cons_ge_one top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry setEquality cumulativity applyEquality functionExtensionality because_Cache functionEquality universeEquality unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination hyp_replacement imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    L  \mmember{}  \{x:T|  P[x]\}    List  supposing  \mexists{}L':\{x:T|  P[x]\}    List.  (L  =  L'\000C)



Date html generated: 2017_04_17-AM-07_25_12
Last ObjectModification: 2017_02_27-PM-04_03_52

Theory : list_1


Home Index