Nuprl Lemma : permutation-sorted-by-unique
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀[sa,sb:T List].  (sa = sb ∈ (T List)) supposing (sorted-by(R;sa) and sorted-by(R;sb) and permutation(T;sa;sb)) 
  supposing Linorder(T;a,b.R a b)
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
sorted-by: sorted-by(R;L), 
list: T List, 
linorder: Linorder(T;x,y.R[x; y]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
top: Top, 
not: ¬A, 
false: False, 
ge: i ≥ j , 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
l_contains: A ⊆ B, 
rev_implies: P ⇐ Q, 
guard: {T}, 
linorder: Linorder(T;x,y.R[x; y]), 
order: Order(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
cand: A c∧ B, 
squash: ↓T, 
true: True
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
permutation_wf, 
sorted-by_wf, 
subtype_rel_dep_function, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
equal_wf, 
linorder_wf, 
permutation-nil-iff, 
nil_wf, 
sorted-by_wf_nil, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
and_wf, 
null_wf, 
btrue_neq_bfalse, 
cons_wf, 
permutation-length, 
length_of_cons_lemma, 
length_of_nil_lemma, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
sorted-by-cons, 
permutation-contains, 
permutation_inversion, 
l_contains_cons, 
cons_member, 
l_all_iff, 
cons_cancel_wrt_permutation, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
applyEquality, 
instantiate, 
functionEquality, 
universeEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
productElimination, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
hyp_replacement, 
Error :applyLambdaEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
unionElimination, 
inlFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[sa,sb:T  List].
        (sa  =  sb)  supposing  (sorted-by(R;sa)  and  sorted-by(R;sb)  and  permutation(T;sa;sb)) 
    supposing  Linorder(T;a,b.R  a  b)
Date html generated:
2016_10_21-AM-10_24_14
Last ObjectModification:
2016_07_12-AM-05_38_29
Theory : list_1
Home
Index