Nuprl Lemma : assert-is_power
∀n:ℕ+. ∀x:ℤ.  (↑is_power(n;x) ⇐⇒ ∃r:ℤ. (x = r^n ∈ ℤ))
Proof
Definitions occuring in Statement : 
is_power: is_power(n;z), 
exp: i^n, 
nat_plus: ℕ+, 
assert: ↑b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
or: P ∨ Q, 
is_power: is_power(n;z), 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
eq_int: (i =z j), 
bfalse: ff, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
assert: ↑b, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
prop: ℙ, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
bnot: ¬bb, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
mod2-cases, 
subtype_base_sq, 
int_subtype_base, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
istype-void, 
mod2-is-zero, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermMultiply_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
istype-nat, 
set_subtype_base, 
le_wf, 
assert-is-power, 
istype-le, 
mod2-is-one, 
itermAdd_wf, 
int_term_value_add_lemma, 
itermMinus_wf, 
int_term_value_minus_lemma, 
nat_plus_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
exp_mul, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__equal_int, 
exp_wf2, 
exp2, 
exp-non-neg, 
square_non_neg, 
absval_wf, 
absval_squared, 
exp-minus, 
nat_properties, 
nat_wf, 
mod_bounds_1, 
nequal_wf, 
mod2-2n-plus-1, 
exp_wf_nat_plus, 
decidable__lt, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
exp-positive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalRule, 
natural_numberEquality, 
Error :inhabitedIsType, 
equalityElimination, 
productElimination, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
independent_pairFormation, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
promote_hyp, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :universeIsType, 
Error :productIsType, 
Error :equalityIstype, 
applyEquality, 
baseApply, 
closedConclusion, 
sqequalBase, 
Error :dependent_set_memberEquality_alt, 
minusEquality, 
universeEquality, 
multiplyEquality, 
addEquality, 
applyLambdaEquality
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbZ{}.    (\muparrow{}is\_power(n;x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}r:\mBbbZ{}.  (x  =  r\^{}n))
Date html generated:
2019_06_20-PM-02_34_39
Last ObjectModification:
2019_03_19-PM-00_16_28
Theory : num_thy_1
Home
Index