Nuprl Lemma : equipollent-int_mod

m:ℕ+. ℤ_m ~ ℕm


Proof




Definitions occuring in Statement :  int_mod: _n equipollent: B int_seg: {i..j-} nat_plus: + all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + int_mod: _n quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q lelt: i ≤ j < k int_seg: {i..j-} squash: T prop: uimplies: supposing a subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) inject: Inj(A;B;f) le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat: so_lambda: λ2x.t[x] so_apply: x[s] surject: Surj(A;B;f) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] istype: istype(T) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b
Lemmas referenced :  nat_plus_wf int_mod_wf int_seg_wf mod_bounds equal_wf squash_wf true_wf istype-universe modulus_functionality_wrt_eqmod modulus_wf_int_mod int-subtype-int_mod subtype_rel_self iff_weakening_equal istype-le istype-less_than eqmod_wf istype-int biject_wf int_seg_subtype_nat istype-false set_subtype_base le_wf int_subtype_base eqmod_refl quotient-member-eq eqmod_equiv_rel modulus-equal-iff-eqmod int_seg_properties nat_plus_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf subtype_rel_set lelt_wf mod_bounds_1 nat_plus_inc_int_nzero modulus_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut universeIsType introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality pointwiseFunctionalityForEquality natural_numberEquality sqequalRule pertypeElimination promote_hyp productElimination equalityTransitivity equalitySymmetry inhabitedIsType independent_pairFormation dependent_set_memberEquality_alt applyEquality lambdaEquality_alt imageElimination instantiate universeEquality intEquality independent_isectElimination because_Cache imageMemberEquality baseClosed independent_functionElimination productIsType equalityIstype dependent_functionElimination sqequalBase dependent_pairFormation_alt pointwiseFunctionality applyLambdaEquality unionElimination approximateComputation int_eqEquality Error :memTop,  voidElimination

Latex:
\mforall{}m:\mBbbN{}\msupplus{}.  \mBbbZ{}\_m  \msim{}  \mBbbN{}m



Date html generated: 2020_05_19-PM-10_03_14
Last ObjectModification: 2020_01_04-PM-08_03_22

Theory : num_thy_1


Home Index