Nuprl Lemma : equipollent-int_mod
∀m:ℕ+. ℤ_m ~ ℕm
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
int_mod: ℤ_n
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
surject: Surj(A;B;f)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
istype: istype(T)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
less_than: a < b
Lemmas referenced : 
nat_plus_wf, 
int_mod_wf, 
int_seg_wf, 
mod_bounds, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
modulus_functionality_wrt_eqmod, 
modulus_wf_int_mod, 
int-subtype-int_mod, 
subtype_rel_self, 
iff_weakening_equal, 
istype-le, 
istype-less_than, 
eqmod_wf, 
istype-int, 
biject_wf, 
int_seg_subtype_nat, 
istype-false, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
eqmod_refl, 
quotient-member-eq, 
eqmod_equiv_rel, 
modulus-equal-iff-eqmod, 
int_seg_properties, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
subtype_rel_set, 
lelt_wf, 
mod_bounds_1, 
nat_plus_inc_int_nzero, 
modulus_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
pointwiseFunctionalityForEquality, 
natural_numberEquality, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
instantiate, 
universeEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
productIsType, 
equalityIstype, 
dependent_functionElimination, 
sqequalBase, 
dependent_pairFormation_alt, 
pointwiseFunctionality, 
applyLambdaEquality, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
voidElimination
Latex:
\mforall{}m:\mBbbN{}\msupplus{}.  \mBbbZ{}\_m  \msim{}  \mBbbN{}m
Date html generated:
2020_05_19-PM-10_03_14
Last ObjectModification:
2020_01_04-PM-08_03_22
Theory : num_thy_1
Home
Index