Nuprl Lemma : exp-ratio_wf

[a:ℕ]. ∀[b:{a 1...}]. ∀[k:ℕ].
  ∀c:{n:ℕa^n < b^n} . ∀n:ℕ.  ((n ≤ c)  (exp-ratio(a;b;n;k a^n;b^n) ∈ {n:ℕa^n < b^n} ))


Proof




Definitions occuring in Statement :  exp-ratio: exp-ratio(a;b;n;p;q) exp: i^n int_upper: {i...} nat: less_than: a < b uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  multiply: m add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] int_upper: {i...} prop: so_apply: x[s] all: x:A. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q exp-ratio: exp-ratio(a;b;n;p;q) decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) squash: T guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff le: A ≤ B subtract: m has-value: (a)↓ sq_type: SQType(T) nat_plus: +
Lemmas referenced :  le_wf nat_wf set_wf less_than_wf exp_wf2 int_upper_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma lt_int_wf sq_stable__less_than int_upper_properties bool_wf equal-wf-T-base assert_wf le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf minus-zero add-zero value-type-has-value int-value-type subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma mul-swap exp_step decidable__lt add-subtract-cancel Error :trivial-int-eq1
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality multiplyEquality because_Cache setEquality addEquality natural_numberEquality isect_memberFormation lambdaFormation dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination dependent_set_memberEquality imageMemberEquality baseClosed imageElimination equalityElimination productElimination pointwiseFunctionality promote_hyp baseApply closedConclusion callbyvalueReduce instantiate cumulativity

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[b:\{a  +  1...\}].  \mforall{}[k:\mBbbN{}].
    \mforall{}c:\{n:\mBbbN{}|  k  *  a\^{}n  <  b\^{}n\}  .  \mforall{}n:\mBbbN{}.    ((n  \mleq{}  c)  {}\mRightarrow{}  (exp-ratio(a;b;n;k  *  a\^{}n;b\^{}n)  \mmember{}  \{n:\mBbbN{}|  k  *  a\^{}n  <  b\^{}n\}  \000C))



Date html generated: 2018_05_21-PM-01_03_11
Last ObjectModification: 2018_01_28-PM-02_12_52

Theory : num_thy_1


Home Index