Nuprl Lemma : less-efficient-exp

i:ℤ. ∀n:ℕ.  (∃j:ℤ [(j i^n ∈ ℤ)])


Proof




Definitions occuring in Statement :  exp: i^n nat: all: x:A. B[x] sq_exists: x:A [B[x]] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} sq_exists: x:A [B[x]] subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] top: Top nat_plus: + ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True int_nzero: -o nequal: a ≠ b ∈  lelt: i ≤ j < k uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_wf set_subtype_base lelt_wf istype-nat natrec_wf sq_exists_wf equal-wf-base le_wf nat_wf subtype_rel_function subtype_rel_self istype-int exp1 exp0_lemma istype-void div_bounds_1 nat_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than div_mono1 decidable__le intformle_wf int_formula_prop_le_lemma istype-le intformand_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_formula_prop_eq_lemma divide_wfa nequal_wf mul_bounds_1a divide_wf exp_add remainder_wf equal_wf squash_wf true_wf istype-universe exp_wf2 div_rem_sum remainder_wfa add-is-int-iff itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma false_wf exp_mul iff_weakening_equal exp2 rem_bounds_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination sqequalRule Error :functionIsType,  Error :universeIsType,  hypothesisEquality Error :setIsType,  Error :inhabitedIsType,  Error :equalityIstype,  applyEquality baseApply closedConclusion baseClosed Error :lambdaEquality_alt,  sqequalBase equalitySymmetry functionExtensionality functionEquality Error :dependent_set_memberFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality independent_pairFormation imageMemberEquality equalityTransitivity Error :productIsType,  multiplyEquality hyp_replacement imageElimination universeEquality addEquality productElimination pointwiseFunctionality promote_hyp

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (\mexists{}j:\mBbbZ{}  [(j  =  i\^{}n)])



Date html generated: 2019_06_20-PM-02_31_34
Last ObjectModification: 2019_03_06-AM-10_53_39

Theory : num_thy_1


Home Index