Nuprl Lemma : bag-extensionality1
∀[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].
  ∀[as,bs:bag(T)].  uiff(as = bs ∈ bag(T);∀x:T. (#([y∈as|eq x y]) = #([y∈bs|eq x y]) ∈ ℤ)) 
  supposing ∀[x,y:T].  (↑(eq x y) 
⇐⇒ x = y ∈ T)
Proof
Definitions occuring in Statement : 
bag-size: #(bs)
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
bag-filter: [x∈b|p[x]]
, 
bag-size: #(bs)
Lemmas referenced : 
bag-size_wf, 
set_wf, 
assert_wf, 
bag-filter_wf, 
equal_wf, 
bag_wf, 
all_wf, 
uall_wf, 
iff_wf, 
bool_wf, 
list_wf, 
permutation_wf, 
permutation_weakening, 
quotient-member-eq, 
permutation-equiv, 
equal-wf-base, 
list-subtype-bag, 
squash_wf, 
true_wf, 
permutation-iff-count1, 
filter_functionality, 
eta_conv, 
length_wf, 
filter_wf5, 
subtype_rel_dep_function, 
l_member_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
sqequalRule, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
dependent_functionElimination, 
axiomEquality, 
intEquality, 
setEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
promote_hyp, 
independent_isectElimination, 
pointwiseFunctionality, 
pertypeElimination, 
independent_functionElimination, 
productEquality, 
universeEquality, 
hyp_replacement, 
setElimination, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[as,bs:bag(T)].    uiff(as  =  bs;\mforall{}x:T.  (\#([y\mmember{}as|eq  x  y])  =  \#([y\mmember{}bs|eq  x  y]))) 
    supposing  \mforall{}[x,y:T].    (\muparrow{}(eq  x  y)  \mLeftarrow{}{}\mRightarrow{}  x  =  y)
Date html generated:
2017_10_01-AM-08_59_27
Last ObjectModification:
2017_07_26-PM-04_41_37
Theory : bags
Home
Index