Nuprl Lemma : bag-null-bag-union
∀[T:Type]. ∀[bbs:bag(bag(T))]. ↑bag-null(bag-union(bbs)) supposing ∀bs:bag(T). (bs ↓∈ bbs
⇒ (↑bag-null(bs)))
Proof
Definitions occuring in Statement :
bag-member: x ↓∈ bs
,
bag-union: bag-union(bbs)
,
bag-null: bag-null(bs)
,
bag: bag(T)
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
all: ∀x:A. B[x]
,
so_apply: x[s]
,
sq_stable: SqStable(P)
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
empty-bag: {}
,
bag-null: bag-null(bs)
,
null: null(as)
,
bag-union: bag-union(bbs)
,
concat: concat(ll)
,
reduce: reduce(f;k;as)
,
list_ind: list_ind,
nil: []
,
it: ⋅
,
btrue: tt
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
true: True
,
cons-bag: x.b
,
top: Top
,
guard: {T}
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
cand: A c∧ B
,
sq_or: a ↓∨ b
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
bag_to_squash_list,
bag_wf,
sq_stable__all,
all_wf,
bag-member_wf,
assert_wf,
bag-null_wf,
bag-union_wf,
sq_stable_from_decidable,
decidable__assert,
assert_witness,
squash_wf,
list_induction,
list-subtype-bag,
subtype_rel_self,
list_wf,
empty-bag_wf,
bag_union_cons_lemma,
assert_functionality_wrt_uiff,
bag-append_wf,
band_wf,
bag-null-append,
cons-bag_wf,
equal-wf-T-base,
assert-bag-null,
bag-member-cons,
iff_transitivity,
iff_weakening_uiff,
assert_of_band,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesisEquality,
hypothesis,
imageElimination,
sqequalRule,
lambdaEquality,
functionEquality,
dependent_functionElimination,
independent_functionElimination,
lambdaFormation,
because_Cache,
productElimination,
promote_hyp,
rename,
applyEquality,
independent_isectElimination,
natural_numberEquality,
isect_memberEquality,
voidElimination,
voidEquality,
hyp_replacement,
equalitySymmetry,
Error :applyLambdaEquality,
imageMemberEquality,
baseClosed,
equalityTransitivity,
universeEquality,
productEquality,
independent_pairFormation,
inlFormation,
comment,
inrFormation
Latex:
\mforall{}[T:Type]. \mforall{}[bbs:bag(bag(T))].
\muparrow{}bag-null(bag-union(bbs)) supposing \mforall{}bs:bag(T). (bs \mdownarrow{}\mmember{} bbs {}\mRightarrow{} (\muparrow{}bag-null(bs)))
Date html generated:
2016_10_25-AM-10_28_50
Last ObjectModification:
2016_07_12-AM-06_45_09
Theory : bags
Home
Index