Nuprl Lemma : count-unordered-combinations
∀[T:Type]
  ∀n,m:ℕ.
    (T ~ ℕn
    
⇒ (UnorderedCombination(m;T) ~ ℕchoose(n;m) supposing m ≤ n ∧ UnorderedCombination(m;T) ~ ℕ0 supposing n < m))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
unordered-combination: UnorderedCombination(n;T)
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
universe: Type
, 
choose: choose(n;i)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
prop: ℙ
, 
int_iseg: {i...j}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
unordered-combination: UnorderedCombination(n;T)
, 
bag-no-repeats: bag-no-repeats(T;bs)
, 
squash: ↓T
, 
bag-size: #(bs)
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
inject: Inj(A;B;f)
, 
no_repeats: no_repeats(T;l)
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
less_than'_wf, 
le_wf, 
member-less_than, 
less_than_wf, 
equipollent_wf, 
int_seg_wf, 
nat_wf, 
unordered-combination_wf, 
choose_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equipollent-choose, 
equipollent-zero, 
equipollent_functionality_wrt_equipollent, 
unordered-combination_functionality, 
equipollent_weakening_ext-eq, 
ext-eq_weakening, 
equal_wf, 
bag-size_wf, 
pigeon-hole, 
select_wf, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
decidable__equal_int_seg, 
int_seg_subtype_nat, 
false_wf, 
set_wf, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
cumulativity, 
natural_numberEquality, 
universeEquality, 
dependent_set_memberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
productEquality, 
applyEquality, 
independent_functionElimination, 
imageElimination, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type]
    \mforall{}n,m:\mBbbN{}.
        (T  \msim{}  \mBbbN{}n
        {}\mRightarrow{}  (UnorderedCombination(m;T)  \msim{}  \mBbbN{}choose(n;m)  supposing  m  \mleq{}  n
              \mwedge{}  UnorderedCombination(m;T)  \msim{}  \mBbbN{}0  supposing  n  <  m))
Date html generated:
2016_10_25-AM-11_32_25
Last ObjectModification:
2016_07_12-AM-07_36_54
Theory : bags_2
Home
Index