Nuprl Lemma : co-alt_wf

co-alt() ∈ colist(ℤ)


Proof




Definitions occuring in Statement :  co-alt: co-alt() colist: colist(T) member: t ∈ T int:
Definitions unfolded in proof :  colist: colist(T) corec: corec(T.F[T]) member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) co-alt: co-alt() b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  bfalse: ff subtract: m bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) nequal: a ≠ b ∈  int_upper: {i...} bnot: ¬bb assert: b pi2: snd(t) less_than: a < b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf subtype_base_sq nat_wf set_subtype_base int_subtype_base primrec0_lemma primrec-unroll-1 decidable__lt bfalse_wf lelt_wf bool_wf eqtt_to_assert int_upper_subtype_nat nequal-le-implies zero-add unit_wf2 eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot primrec_wf int_upper_properties top_wf b-union_wf itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberEquality cut thin lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality instantiate cumulativity imageMemberEquality dependent_pairEquality independent_pairEquality equalityElimination promote_hyp productEquality universeEquality baseClosed addEquality

Latex:
co-alt()  \mmember{}  colist(\mBbbZ{})



Date html generated: 2018_05_21-PM-10_20_27
Last ObjectModification: 2017_07_26-PM-06_37_28

Theory : eval!all


Home Index