Nuprl Lemma : exp-ratio_wf

[a:ℕ]. ∀[b:{a 1...}]. ∀[k:ℕ].
  ∀c:{n:ℕa^n < b^n} . ∀n:ℕ.  ((n ≤ c)  (exp-ratio(a;b;n;k a^n;b^n) ∈ {n:ℕa^n < b^n} ))


Proof




Definitions occuring in Statement :  exp-ratio: exp-ratio(a;b;n;p;q) exp: i^n int_upper: {i...} nat: less_than: a < b uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  multiply: m add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] int_upper: {i...} prop: so_apply: x[s] all: x:A. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q exp-ratio: exp-ratio(a;b;n;p;q) decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) squash: T guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff le: A ≤ B subtract: m has-value: (a)↓ sq_type: SQType(T) nat_plus: +
Lemmas referenced :  trivial-int-eq1 add-subtract-cancel decidable__lt exp_step mul-swap int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int int_subtype_base subtype_base_sq int-value-type value-type-has-value add-zero minus-zero false_wf int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert assert_of_lt_int eqtt_to_assert uiff_transitivity bnot_wf le_int_wf assert_wf equal-wf-T-base bool_wf int_upper_properties sq_stable__less_than lt_int_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties int_upper_wf exp_wf2 less_than_wf set_wf nat_wf le_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality multiplyEquality because_Cache setEquality addEquality natural_numberEquality isect_memberFormation introduction lambdaFormation dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination dependent_set_memberEquality imageMemberEquality baseClosed imageElimination equalityElimination productElimination equalityEquality pointwiseFunctionality promote_hyp baseApply closedConclusion callbyvalueReduce instantiate cumulativity

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[b:\{a  +  1...\}].  \mforall{}[k:\mBbbN{}].
    \mforall{}c:\{n:\mBbbN{}|  k  *  a\^{}n  <  b\^{}n\}  .  \mforall{}n:\mBbbN{}.    ((n  \mleq{}  c)  {}\mRightarrow{}  (exp-ratio(a;b;n;k  *  a\^{}n;b\^{}n)  \mmember{}  \{n:\mBbbN{}|  k  *  a\^{}n  <  b\^{}n\}  \000C))



Date html generated: 2016_05_15-PM-04_07_39
Last ObjectModification: 2016_01_16-AM-11_05_56

Theory : general


Home Index