Nuprl Lemma : final-iterate-property

[A:Type]
  ∀f:A ⟶ (A Top)
    (SWellFounded(p-graph(A;f) x)
     (∀x:A
          ∃n:ℕ
           ((↑can-apply(f^n;x)) c∧ ((final-iterate(f;x) do-apply(f^n;x) ∈ A) ∧ (¬↑can-apply(f;final-iterate(f;x)))))))


Proof




Definitions occuring in Statement :  final-iterate: final-iterate(f;x) p-graph: p-graph(A;f) p-fun-exp: f^n do-apply: do-apply(f;x) can-apply: can-apply(f;x) strongwellfounded: SWellFounded(R[x; y]) nat: assert: b uall: [x:A]. B[x] top: Top cand: c∧ B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q p-graph: p-graph(A;f) strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] final-iterate: final-iterate(f;x) member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] cand: c∧ B so_apply: x[s] uimplies: supposing a top: Top and: P ∧ Q nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} ge: i ≥  le: A ≤ B less_than': less_than'(a;b) assert: b ifthenelse: if then else fi  can-apply: can-apply(f;x) isl: isl(x) p-fun-exp: f^n primrec: primrec(n;b;c) p-id: p-id() btrue: tt true: True do-apply: do-apply(f;x) outl: outl(x) less_than: a < b squash: T bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff
Lemmas referenced :  le_wf all_wf subtract_wf exists_wf nat_wf assert_wf can-apply_wf p-fun-exp_wf subtype_rel_dep_function top_wf subtype_rel_union equal_wf final-iterate_wf do-apply_wf not_wf set_wf less_than_wf primrec-wf2 decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf strongwellfounded_wf p-graph_wf2 bool_wf nat_properties intformand_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_term_value_constant_lemma int_formula_prop_less_lemma equal-wf-T-base bnot_wf false_wf itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma p-fun-exp-add1-sq eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis addLevel sqequalHypSubstitution sqequalRule thin productElimination introduction extract_by_obid isectElimination applyEquality functionExtensionality hypothesisEquality cumulativity because_Cache natural_numberEquality rename setElimination lambdaEquality functionEquality productEquality unionEquality independent_isectElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry intEquality dependent_functionElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality computeAll levelHypothesis universeEquality independent_pairFormation applyLambdaEquality baseClosed dependent_set_memberEquality imageElimination addEquality equalityElimination

Latex:
\mforall{}[A:Type]
    \mforall{}f:A  {}\mrightarrow{}  (A  +  Top)
        (SWellFounded(p-graph(A;f)  y  x)
        {}\mRightarrow{}  (\mforall{}x:A
                    \mexists{}n:\mBbbN{}
                      ((\muparrow{}can-apply(f\^{}n;x))
                      c\mwedge{}  ((final-iterate(f;x)  =  do-apply(f\^{}n;x))  \mwedge{}  (\mneg{}\muparrow{}can-apply(f;final-iterate(f;x)))))))



Date html generated: 2018_05_21-PM-07_36_50
Last ObjectModification: 2017_07_26-PM-05_10_49

Theory : general


Home Index