Nuprl Lemma : gensearch_wf
∀[A,B:Type]. ∀[r:A ⟶ ℕ]. ∀[f:A ⟶ (B + Top)]. ∀[g:A ⟶ (A + Top)].
  ∀[a:A]. (gensearch(f;g;a) ∈ B + Top) supposing ∀a:A. ((↑isl(g a)) 
⇒ r outl(g a) < r a)
Proof
Definitions occuring in Statement : 
gensearch: gensearch(f;g;x)
, 
nat: ℕ
, 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
gensearch: gensearch(f;g;x)
, 
outl: outl(x)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__lt, 
subtype_rel_self, 
top_wf, 
equal_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
all_wf, 
assert_wf, 
isl_wf, 
assert_elim, 
bfalse_wf, 
and_wf, 
btrue_neq_bfalse, 
btrue_wf, 
bool_wf, 
bool_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
productElimination, 
unionElimination, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
unionEquality, 
inlEquality, 
inrEquality, 
addEquality, 
functionEquality, 
universeEquality, 
hyp_replacement, 
functionExtensionality, 
imageElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[r:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[g:A  {}\mrightarrow{}  (A  +  Top)].
    \mforall{}[a:A].  (gensearch(f;g;a)  \mmember{}  B  +  Top)  supposing  \mforall{}a:A.  ((\muparrow{}isl(g  a))  {}\mRightarrow{}  r  outl(g  a)  <  r  a)
Date html generated:
2019_10_15-AM-11_06_57
Last ObjectModification:
2018_08_21-PM-03_44_11
Theory : general
Home
Index