Nuprl Lemma : gensearch_wf

[A,B:Type]. ∀[r:A ⟶ ℕ]. ∀[f:A ⟶ (B Top)]. ∀[g:A ⟶ (A Top)].
  ∀[a:A]. (gensearch(f;g;a) ∈ Top) supposing ∀a:A. ((↑isl(g a))  outl(g a) < a)


Proof




Definitions occuring in Statement :  gensearch: gensearch(f;g;x) nat: outl: outl(x) assert: b isl: isl(x) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) gensearch: gensearch(f;g;x) outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True less_than: a < b squash: T
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int subtype_base_sq set_subtype_base lelt_wf int_subtype_base intformeq_wf int_formula_prop_eq_lemma decidable__lt subtype_rel_self top_wf equal_wf itermAdd_wf int_term_value_add_lemma nat_wf all_wf assert_wf isl_wf assert_elim bfalse_wf and_wf btrue_neq_bfalse btrue_wf bool_wf bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache productElimination unionElimination instantiate cumulativity applyLambdaEquality dependent_set_memberEquality hypothesis_subsumption unionEquality inlEquality inrEquality addEquality functionEquality universeEquality hyp_replacement functionExtensionality imageElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[r:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[g:A  {}\mrightarrow{}  (A  +  Top)].
    \mforall{}[a:A].  (gensearch(f;g;a)  \mmember{}  B  +  Top)  supposing  \mforall{}a:A.  ((\muparrow{}isl(g  a))  {}\mRightarrow{}  r  outl(g  a)  <  r  a)



Date html generated: 2019_10_15-AM-11_06_57
Last ObjectModification: 2018_08_21-PM-03_44_11

Theory : general


Home Index