Nuprl Lemma : l-ordered-decomp
∀[T:Type]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x:T].
  ∀[L:T List]. L = (filter(λy.R[y;x];L) @ filter(λy.(¬bR[y;x]);L)) ∈ (T List) supposing l-ordered(T;x,y.↑R[x;y];L) 
  supposing Trans(T;x,y.↑R[x;y])
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
filter: filter(P;l), 
append: as @ bs, 
list: T List, 
trans: Trans(T;x,y.E[x; y]), 
bnot: ¬bb, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
prop: ℙ, 
all: ∀x:A. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
bfalse: ff, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
assert: ↑b, 
false: False, 
not: ¬A, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
list_induction, 
isect_wf, 
l-ordered_wf, 
assert_wf, 
equal_wf, 
list_wf, 
append_wf, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
filter_nil_lemma, 
list_ind_nil_lemma, 
nil_wf, 
true_wf, 
l-ordered-nil-true, 
equal-wf-base, 
filter_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
list_ind_cons_lemma, 
cons_wf, 
iff_weakening_equal, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
filter_is_nil, 
l_all_iff, 
not_wf, 
l-ordered-cons, 
all_wf, 
trans_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addLevel, 
independent_isectElimination, 
productElimination, 
natural_numberEquality, 
isectEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
productEquality, 
functionEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].
    \mforall{}[L:T  List]
        L  =  (filter(\mlambda{}y.R[y;x];L)  @  filter(\mlambda{}y.(\mneg{}\msubb{}R[y;x]);L))  supposing  l-ordered(T;x,y.\muparrow{}R[x;y];L) 
    supposing  Trans(T;x,y.\muparrow{}R[x;y])
Date html generated:
2018_05_21-PM-07_38_36
Last ObjectModification:
2017_07_26-PM-05_12_50
Theory : general
Home
Index