Nuprl Lemma : map-permute_list
∀[g:Top]. ∀[L:Top List]. ∀[f:ℕ||L|| ⟶ ℕ||L||].  (map(g;(L o f)) ~ (map(g;L) o f))
Proof
Definitions occuring in Statement : 
permute_list: (L o f)
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
permute_list: (L o f)
, 
mklist: mklist(n;f)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
label: ...$L... t
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
int_seg_wf, 
length_wf, 
top_wf, 
list_wf, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
length-map-sq, 
iff_weakening_equal, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
primrec0_lemma, 
map_nil_lemma, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
primrec-unroll, 
map_append_sq, 
map_cons_lemma, 
select-map, 
decidable__lt, 
lelt_wf, 
length_wf_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
equalityElimination, 
promote_hyp, 
functionExtensionality, 
dependent_set_memberEquality
Latex:
\mforall{}[g:Top].  \mforall{}[L:Top  List].  \mforall{}[f:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||].    (map(g;(L  o  f))  \msim{}  (map(g;L)  o  f))
Date html generated:
2018_05_21-PM-06_54_05
Last ObjectModification:
2017_07_26-PM-04_59_04
Theory : general
Home
Index