Nuprl Lemma : member-le-max

[L:ℤ List]. ∀[x:ℤ].  x ≤ imax-list(L) supposing (x ∈ L)


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False cons: [a b] top: Top guard: {T} nat: le: A ≤ B decidable: Dec(P) not: ¬A rev_implies:  Q prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b squash: T
Lemmas referenced :  imax-list-ub list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than'_wf imax-list_wf l_member_wf list_wf lelt_wf length_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_wf select_wf int_seg_properties itermConstant_wf int_term_value_constant_lemma intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_isectElimination hypothesis intEquality isectElimination unionElimination sqequalRule productElimination independent_functionElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality lambdaFormation setElimination rename natural_numberEquality addEquality independent_pairFormation applyEquality because_Cache minusEquality equalityTransitivity equalitySymmetry independent_pairEquality lambdaEquality axiomEquality dependent_pairFormation dependent_set_memberEquality int_eqEquality computeAll imageElimination

Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}[x:\mBbbZ{}].    x  \mleq{}  imax-list(L)  supposing  (x  \mmember{}  L)



Date html generated: 2018_05_21-PM-06_49_57
Last ObjectModification: 2017_07_26-PM-04_57_13

Theory : general


Home Index