Nuprl Lemma : priority-select-ff
∀[T:Type]
  ∀as:T List. ∀f,g:T ⟶ 𝔹.
    (priority-select(f;g;as) = (inl ff) ∈ (𝔹?)
       
⇐⇒ (∃a∈as. (↑(g a)) ∧ (∀b:T. ((b ∈ as) 
⇒ ¬↑(f b) supposing b ≤ a)))) supposing 
       (sorted(as) and 
       (T ⊆r ℤ))
Proof
Definitions occuring in Statement : 
priority-select: priority-select(f;g;as)
, 
l_exists: (∃x∈L. P[x])
, 
sorted: sorted(L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
bfalse: ff
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
sorted: sorted(L)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
l_exists: (∃x∈L. P[x])
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
label: ...$L... t
, 
sq_type: SQType(T)
Lemmas referenced : 
less_than'_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
int_seg_wf, 
priority-select-property, 
exists_wf, 
assert_wf, 
all_wf, 
not_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
l_exists_wf, 
l_member_wf, 
le_wf, 
equal-wf-T-base, 
bool_wf, 
unit_wf2, 
priority-select_wf, 
iff_wf, 
sorted_wf, 
subtype_rel_wf, 
list_wf, 
lelt_wf, 
nat_properties, 
le_antisymmetry, 
le_transitivity, 
le_weakening, 
subtype_base_sq, 
int_subtype_base, 
select_member, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
setElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
cumulativity, 
imageElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
functionExtensionality, 
addEquality, 
functionEquality, 
isectEquality, 
setEquality, 
addLevel, 
impliesFunctionality, 
independent_functionElimination, 
unionEquality, 
baseClosed, 
universeEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
dependent_set_memberEquality, 
instantiate
Latex:
\mforall{}[T:Type]
    \mforall{}as:T  List.  \mforall{}f,g:T  {}\mrightarrow{}  \mBbbB{}.
        (priority-select(f;g;as)  =  (inl  ff)
              \mLeftarrow{}{}\mRightarrow{}  (\mexists{}a\mmember{}as.  (\muparrow{}(g  a))  \mwedge{}  (\mforall{}b:T.  ((b  \mmember{}  as)  {}\mRightarrow{}  \mneg{}\muparrow{}(f  b)  supposing  b  \mleq{}  a))))  supposing 
              (sorted(as)  and 
              (T  \msubseteq{}r  \mBbbZ{}))
Date html generated:
2016_10_25-AM-10_49_53
Last ObjectModification:
2016_07_12-AM-06_59_20
Theory : general
Home
Index