Nuprl Lemma : rel-plus-rel-immediate

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  R!+ => R+


Proof




Definitions occuring in Statement :  rel-immediate: R! rel_plus: R+ rel_implies: R1 => R2 uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_plus: R+ rel-immediate: R! rel_implies: R1 => R2 infix_ap: y uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff btrue: tt cand: c∧ B nat_plus: + bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) uimplies: supposing a or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nat: nequal: a ≠ b ∈  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top
Lemmas referenced :  rel_exp_wf exists_wf nat_plus_wf nat_plus_subtype_nat all_wf not_wf equal_wf nat_plus_properties eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel infix_ap_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf primrec-wf-nat-plus
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality applyEquality cut introduction extract_by_obid isectElimination because_Cache hypothesis cumulativity functionExtensionality lambdaEquality productEquality functionEquality universeEquality independent_pairFormation rename setElimination addEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    R!\msupplus{}  =>  R\msupplus{}



Date html generated: 2018_05_21-PM-07_42_18
Last ObjectModification: 2017_07_26-PM-05_20_08

Theory : general


Home Index