Nuprl Lemma : sparse-signed-rep_wf

[m:ℤ]
  (sparse-signed-rep(m) ∈ {L:{-1..2-List| 
                           (m = Σi<||L||.L[i]*2^i ∈ ℤ)
                           ∧ (0 < ||L||  (last(L) 0 ∈ ℤ)))
                           ∧ (∀i:ℕ||L|| 1. ((L[i] 0 ∈ ℤ) ∨ (L[i 1] 0 ∈ ℤ)))} )


Proof




Definitions occuring in Statement :  sparse-signed-rep: sparse-signed-rep(m) power-sum: Σi<n.a[i]*x^i last: last(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  subtract: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_exists: x:A [B[x]] sparse-signed-rep: sparse-signed-rep(m) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T so_apply: x[s] assert: b ifthenelse: if then else fi  btrue: tt select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] less_than': less_than'(a;b) cons: [a b] bfalse: ff uiff: uiff(P;Q)
Lemmas referenced :  sparse-signed-rep-exists-ext subtype_rel_self sq_exists_wf list_wf int_seg_wf equal-wf-base-T int_subtype_base power-sum_wf length_wf_nat select_wf int_seg_properties length_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma less_than_wf not_wf equal-wf-T-base last_wf subtype_rel_list list-cases null_nil_lemma length_of_nil_lemma stuck-spread base_wf product_subtype_list null_cons_lemma length_of_cons_lemma false_wf all_wf subtract_wf or_wf subtract-is-int-iff itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma equal_wf evalall-reduce list-valueall-type set-valueall-type lelt_wf int-valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin instantiate extract_by_obid hypothesis sqequalRule sqequalHypSubstitution isectElimination functionEquality intEquality minusEquality natural_numberEquality lambdaEquality productEquality hypothesisEquality setElimination rename because_Cache independent_isectElimination productElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination baseClosed lambdaFormation promote_hyp hypothesis_subsumption pointwiseFunctionality equalityTransitivity equalitySymmetry baseApply closedConclusion addEquality axiomEquality

Latex:
\mforall{}[m:\mBbbZ{}]
    (sparse-signed-rep(m)  \mmember{}  \{L:\{-1..2\msupminus{}\}  List| 
                                                      (m  =  \mSigma{}i<||L||.L[i]*2\^{}i)
                                                      \mwedge{}  (0  <  ||L||  {}\mRightarrow{}  (\mneg{}(last(L)  =  0)))
                                                      \mwedge{}  (\mforall{}i:\mBbbN{}||L||  -  1.  ((L[i]  =  0)  \mvee{}  (L[i  +  1]  =  0)))\}  )



Date html generated: 2018_05_21-PM-08_36_01
Last ObjectModification: 2018_05_19-PM-05_05_53

Theory : general


Home Index