Nuprl Lemma : sparse-signed-rep_wf
∀[m:ℤ]
  (sparse-signed-rep(m) ∈ {L:{-1..2-} List| 
                           (m = Σi<||L||.L[i]*2^i ∈ ℤ)
                           ∧ (0 < ||L|| 
⇒ (¬(last(L) = 0 ∈ ℤ)))
                           ∧ (∀i:ℕ||L|| - 1. ((L[i] = 0 ∈ ℤ) ∨ (L[i + 1] = 0 ∈ ℤ)))} )
Proof
Definitions occuring in Statement : 
sparse-signed-rep: sparse-signed-rep(m)
, 
power-sum: Σi<n.a[i]*x^i
, 
last: last(L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_exists: ∃x:A [B[x]]
, 
sparse-signed-rep: sparse-signed-rep(m)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
bfalse: ff
, 
uiff: uiff(P;Q)
Lemmas referenced : 
sparse-signed-rep-exists-ext, 
subtype_rel_self, 
sq_exists_wf, 
list_wf, 
int_seg_wf, 
equal-wf-base-T, 
int_subtype_base, 
power-sum_wf, 
length_wf_nat, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
less_than_wf, 
not_wf, 
equal-wf-T-base, 
last_wf, 
subtype_rel_list, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
all_wf, 
subtract_wf, 
or_wf, 
subtract-is-int-iff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
equal_wf, 
evalall-reduce, 
list-valueall-type, 
set-valueall-type, 
lelt_wf, 
int-valueall-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
intEquality, 
minusEquality, 
natural_numberEquality, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
imageElimination, 
baseClosed, 
lambdaFormation, 
promote_hyp, 
hypothesis_subsumption, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
addEquality, 
axiomEquality
Latex:
\mforall{}[m:\mBbbZ{}]
    (sparse-signed-rep(m)  \mmember{}  \{L:\{-1..2\msupminus{}\}  List| 
                                                      (m  =  \mSigma{}i<||L||.L[i]*2\^{}i)
                                                      \mwedge{}  (0  <  ||L||  {}\mRightarrow{}  (\mneg{}(last(L)  =  0)))
                                                      \mwedge{}  (\mforall{}i:\mBbbN{}||L||  -  1.  ((L[i]  =  0)  \mvee{}  (L[i  +  1]  =  0)))\}  )
Date html generated:
2018_05_21-PM-08_36_01
Last ObjectModification:
2018_05_19-PM-05_05_53
Theory : general
Home
Index