Nuprl Lemma : split-by-indices

[T:Type]
  ∀L:T List. ∀ids:ℕ List.
    ∃L1,L2:T List. (permutation(T;L;L1 L2) ∧ (∃f:ℕ||L1|| ⟶ {i:ℕ||L||| (i ∈ ids)} (Bij(ℕ||L1||;{i:ℕ||L||| (i ∈ ids)}\000C ;f) ∧ (∀j:ℕ||L1||. (L1[j] L[f j] ∈ T)))))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) l_member: (x ∈ l) select: L[n] length: ||as|| append: as bs list: List biject: Bij(A;B;f) int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T exists: x:A. B[x] implies:  Q top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B let: let int_seg: {i..j-} subtype_rel: A ⊆B uimplies: supposing a nat: guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A less_than: a < b squash: T index-split: index-split(L;idxs) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  index-split_property index-split_wf list_wf pi1_wf_top equal_wf pi2_wf permutation_wf append_wf exists_wf int_seg_wf length_wf l_member_wf subtype_rel_list nat_wf biject_wf all_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma zero-le-nat set_wf index-split-permutation firstn_wf permute-to-front_wf filter_wf5 upto_wf int-list-member_wf nth_tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination dependent_pairFormation cumulativity hypothesis productEquality productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_functionElimination because_Cache sqequalRule lambdaEquality independent_pairFormation functionEquality natural_numberEquality setEquality intEquality setElimination rename applyEquality independent_isectElimination functionExtensionality unionElimination int_eqEquality computeAll imageElimination universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}ids:\mBbbN{}  List.
        \mexists{}L1,L2:T  List
          (permutation(T;L;L1  @  L2)
          \mwedge{}  (\mexists{}f:\mBbbN{}||L1||  {}\mrightarrow{}  \{i:\mBbbN{}||L|||  (i  \mmember{}  ids)\}  .  (Bij(\mBbbN{}||L1||;\{i:\mBbbN{}||L|||  (i  \mmember{}  ids)\}  ;f)  \mwedge{}  (\mforall{}j:\mBbbN{}||L1||.  \000C(L1[j]  =  L[f  j])))))



Date html generated: 2018_05_21-PM-07_33_06
Last ObjectModification: 2017_07_26-PM-05_08_02

Theory : general


Home Index