Nuprl Lemma : split-by-indices
∀[T:Type]
  ∀L:T List. ∀ids:ℕ List.
    ∃L1,L2:T List. (permutation(T;L;L1 @ L2) ∧ (∃f:ℕ||L1|| ⟶ {i:ℕ||L||| (i ∈ ids)} . (Bij(ℕ||L1||;{i:ℕ||L||| (i ∈ ids)}\000C f) ∧ (∀j:ℕ||L1||. (L1[j] = L[f j] ∈ T)))))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
biject: Bij(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
let: let, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
index-split: index-split(L;idxs)
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
index-split_property, 
index-split_wf, 
list_wf, 
pi1_wf_top, 
equal_wf, 
pi2_wf, 
permutation_wf, 
append_wf, 
exists_wf, 
int_seg_wf, 
length_wf, 
l_member_wf, 
subtype_rel_list, 
nat_wf, 
biject_wf, 
all_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
zero-le-nat, 
set_wf, 
index-split-permutation, 
firstn_wf, 
permute-to-front_wf, 
filter_wf5, 
upto_wf, 
int-list-member_wf, 
nth_tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
cumulativity, 
hypothesis, 
productEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_pairFormation, 
functionEquality, 
natural_numberEquality, 
setEquality, 
intEquality, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
functionExtensionality, 
unionElimination, 
int_eqEquality, 
computeAll, 
imageElimination, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}ids:\mBbbN{}  List.
        \mexists{}L1,L2:T  List
          (permutation(T;L;L1  @  L2)
          \mwedge{}  (\mexists{}f:\mBbbN{}||L1||  {}\mrightarrow{}  \{i:\mBbbN{}||L|||  (i  \mmember{}  ids)\}  .  (Bij(\mBbbN{}||L1||;\{i:\mBbbN{}||L|||  (i  \mmember{}  ids)\}  ;f)  \mwedge{}  (\mforall{}j:\mBbbN{}||L1||.  \000C(L1[j]  =  L[f  j])))))
Date html generated:
2018_05_21-PM-07_33_06
Last ObjectModification:
2017_07_26-PM-05_08_02
Theory : general
Home
Index