Nuprl Lemma : index-split_property

[T:Type]
  ∀L:T List. ∀idxs:ℕ List.
    let L1 fst(index-split(L;idxs)) in
        ∃f:ℕ||L1|| ⟶ {i:ℕ||L||| (i ∈ idxs)} (Bij(ℕ||L1||;{i:ℕ||L||| (i ∈ idxs)} ;f) ∧ (∀j:ℕ||L1||. (L1[j] L[f j] ∈ \000CT)))


Proof




Definitions occuring in Statement :  index-split: index-split(L;idxs) l_member: (x ∈ l) select: L[n] length: ||as|| list: List biject: Bij(A;B;f) int_seg: {i..j-} nat: let: let uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} int_seg: {i..j-} subtype_rel: A ⊆B nat: index-split: index-split(L;idxs) let: let pi1: fst(t) prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q int_iseg: {i...j} cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top lelt: i ≤ j < k less_than: a < b squash: T true: True rev_implies:  Q less_than': less_than'(a;b) biject: Bij(A;B;f) uiff: uiff(P;Q) no_repeats: no_repeats(T;l) surject: Surj(A;B;f) sq_stable: SqStable(P) l_member: (x ∈ l) permute-to-front: permute-to-front(L;idxs)
Lemmas referenced :  permute-to-front-permutation permutation-length permute-to-front_wf subtype_base_sq int_subtype_base length_upto length_wf_nat length-filter int_seg_wf length_wf int-list-member_wf subtype_rel_list nat_wf istype-nat upto_wf list_wf istype-universe filter_type assert_wf l_member_wf subtype_rel_sets_simple assert-int-list-member istype-assert list_subtype_base set_subtype_base lelt_wf non_neg_length decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le length_firstn select_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma biject_wf firstn_wf less_than_wf length_firstn_eq iff_weakening_equal zero-le-nat subtype_rel_set int_seg_subtype_nat istype-false no_repeats_inject no_repeats_upto no_repeats_filter istype-less_than le_wf decidable__equal_int_seg decidable__equal_set sq_stable__l_member member_filter member_upto int_formula_prop_eq_lemma intformeq_wf decidable__equal_int nat_properties equal_wf squash_wf true_wf select_firstn subtype_rel_self permute_list_select append_wf filter_wf5 bnot_wf length-append filter-split-length select_append_front
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination because_Cache hypothesis independent_isectElimination instantiate cumulativity intEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule natural_numberEquality lambdaEquality_alt setElimination rename applyEquality universeIsType universeEquality setEquality productElimination inhabitedIsType equalityIstype setIsType dependent_set_memberEquality_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation productIsType closedConclusion imageElimination functionIsType imageMemberEquality baseClosed isectIsTypeImplies functionIsTypeImplies sqequalBase baseApply applyLambdaEquality promote_hyp

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}idxs:\mBbbN{}  List.
        let  L1  =  fst(index-split(L;idxs))  in
                \mexists{}f:\mBbbN{}||L1||  {}\mrightarrow{}  \{i:\mBbbN{}||L|||  (i  \mmember{}  idxs)\}  .  (Bij(\mBbbN{}||L1||;\{i:\mBbbN{}||L|||  (i  \mmember{}  idxs)\}  ;f)  \mwedge{}  (\mforall{}j:\mBbbN{}||L1||\000C.  (L1[j]  =  L[f  j])))



Date html generated: 2019_10_15-AM-11_13_01
Last ObjectModification: 2019_06_25-PM-01_22_43

Theory : general


Home Index