Nuprl Lemma : sum-map-append1

[f:Top]. ∀[L:Top List]. ∀[x:Top].  f[x] for x ∈ [x] ~ Σf[x] for x ∈ f[x])


Proof




Definitions occuring in Statement :  sum-map: Σf[x] for x ∈ L append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] top: Top so_apply: x[s] add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sum-map: Σf[x] for x ∈ L top: Top so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T not: ¬A implies:  Q false: False prop: uimplies: supposing a ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] sq_type: SQType(T) guard: {T} nat_plus: + uiff: uiff(P;Q) nat: sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) bool: 𝔹 unit: Unit it: btrue: tt le: A ≤ B bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b select: L[n] cons: [a b]
Lemmas referenced :  sum-unroll decidable__lt length_wf top_wf append_wf cons_wf nil_wf less_than_wf length-append subtract_wf subtype_base_sq int_subtype_base length_of_cons_lemma length_of_nil_lemma non_neg_length decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties add-is-int-iff intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma false_wf equal_wf list_wf nat_properties intformle_wf int_formula_prop_le_lemma ge_wf le_wf decidable__le nat_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot select-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis dependent_functionElimination natural_numberEquality hypothesisEquality unionElimination because_Cache lessCases sqequalAxiom independent_pairFormation imageMemberEquality baseClosed lambdaFormation imageElimination productElimination independent_functionElimination addEquality instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation lambdaEquality int_eqEquality computeAll dependent_set_memberEquality applyLambdaEquality setElimination rename pointwiseFunctionality promote_hyp baseApply closedConclusion intWeakElimination equalityElimination

Latex:
\mforall{}[f:Top].  \mforall{}[L:Top  List].  \mforall{}[x:Top].    (\mSigma{}f[x]  for  x  \mmember{}  L  @  [x]  \msim{}  \mSigma{}f[x]  for  x  \mmember{}  L  +  f[x])



Date html generated: 2018_05_21-PM-08_29_06
Last ObjectModification: 2017_07_26-PM-05_56_13

Theory : general


Home Index