Nuprl Lemma : free-dl-1-join-irreducible

T:Type. ∀eq:EqDecider(T). ∀x,y:Point(free-dist-lattice(T; eq)).
  (x ∨ 1 ∈ Point(free-dist-lattice(T; eq))
  ⇐⇒ (x 1 ∈ Point(free-dist-lattice(T; eq))) ∨ (y 1 ∈ Point(free-dist-lattice(T; eq))))


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-1: 1 lattice-join: a ∨ b lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q or: P ∨ Q guard: {T} top: Top fset-ac-lub: fset-ac-lub(eq;ac1;ac2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) true: True squash: T
Lemmas referenced :  equal_wf lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-1_wf bdd-distributive-lattice_wf or_wf deq_wf free-dl-1 free-dl-join free-dl-point member-fset-minimals fset_wf deq-fset_wf f-proper-subset-dec_wf fset-union_wf empty-fset_wf member-fset-union lattice-join-1 bdd-distributive-lattice-subtype-bdd-lattice iff_weakening_equal lattice-1-join squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination setElimination rename dependent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_functionElimination unionElimination inlFormation inrFormation isect_memberEquality voidElimination voidEquality equalityUniverse levelHypothesis natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(free-dist-lattice(T;  eq)).    (x  \mvee{}  y  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (y  =  1))



Date html generated: 2020_05_20-AM-08_45_26
Last ObjectModification: 2017_07_28-AM-09_14_27

Theory : lattices


Home Index