Nuprl Lemma : free-dl-1
∀T:Type. ∀eq:EqDecider(T). ∀x:Point(free-dist-lattice(T; eq)).  (x = 1 ∈ Point(free-dist-lattice(T; eq)) 
⇐⇒ {} ∈ x)
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
deq-fset: deq-fset(eq)
, 
empty-fset: {}
, 
fset-member: a ∈ s
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
lattice-1: 1
, 
record-select: r.x
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
btrue: tt
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
f-proper-subset: xs ⊆≠ ys
, 
f-subset: xs ⊆ ys
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
free-dl-point, 
fset-member_wf, 
fset_wf, 
deq-fset_wf, 
empty-fset_wf, 
lattice-point_wf, 
free-dist-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf, 
istype-universe, 
member-fset-singleton, 
assert-fset-antichain, 
fset-extensionality, 
fset-singleton_wf, 
fset-member_witness, 
istype-assert, 
fset-antichain_wf, 
fset-null_wf, 
eqtt_to_assert, 
assert-fset-null, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
mem_empty_lemma, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
independent_pairFormation, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
universeIsType, 
setElimination, 
rename, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
because_Cache, 
independent_isectElimination, 
universeEquality, 
productElimination, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
isect_memberFormation_alt, 
equalityTransitivity, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
voidElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x:Point(free-dist-lattice(T;  eq)).    (x  =  1  \mLeftarrow{}{}\mRightarrow{}  \{\}  \mmember{}  x)
Date html generated:
2020_05_20-AM-08_45_03
Last ObjectModification:
2020_02_03-AM-11_28_07
Theory : lattices
Home
Index