Nuprl Lemma : free-dl-1

T:Type. ∀eq:EqDecider(T). ∀x:Point(free-dist-lattice(T; eq)).  (x 1 ∈ Point(free-dist-lattice(T; eq)) ⇐⇒ {} ∈ x)


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-1: 1 lattice-point: Point(l) deq-fset: deq-fset(eq) empty-fset: {} fset-member: a ∈ s deq: EqDecider(T) all: x:A. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] lattice-1: 1 record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it: uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q prop: subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a uiff: uiff(P;Q) bool: 𝔹 unit: Unit bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A f-proper-subset: xs ⊆≠ ys f-subset: xs ⊆ ys squash: T true: True
Lemmas referenced :  free-dl-point fset-member_wf fset_wf deq-fset_wf empty-fset_wf lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf istype-universe member-fset-singleton assert-fset-antichain fset-extensionality fset-singleton_wf fset-member_witness istype-assert fset-antichain_wf fset-null_wf eqtt_to_assert assert-fset-null eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base mem_empty_lemma squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin Error :memTop,  hypothesis independent_pairFormation equalityIstype inhabitedIsType hypothesisEquality baseClosed sqequalBase equalitySymmetry universeIsType setElimination rename applyEquality instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache independent_isectElimination universeEquality productElimination hyp_replacement applyLambdaEquality dependent_set_memberEquality_alt isect_memberFormation_alt equalityTransitivity independent_functionElimination dependent_functionElimination unionElimination equalityElimination dependent_pairFormation_alt promote_hyp voidElimination imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x:Point(free-dist-lattice(T;  eq)).    (x  =  1  \mLeftarrow{}{}\mRightarrow{}  \{\}  \mmember{}  x)



Date html generated: 2020_05_20-AM-08_45_03
Last ObjectModification: 2020_02_03-AM-11_28_07

Theory : lattices


Home Index