Nuprl Lemma : inhabited-half-cube

k:ℕ. ∀a,b:ℚCube(k).  ((↑is-half-cube(k;a;b))  (↑Inhabited(a) ⇐⇒ ↑Inhabited(b)))


Proof




Definitions occuring in Statement :  inhabited-rat-cube: Inhabited(c) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) rational-cube: Cube(k) rev_implies:  Q nat: prop: guard: {T} rational-interval: Interval inhabited-rat-interval: Inhabited(I) is-half-interval: is-half-interval(I;J) or: P ∨ Q sq_type: SQType(T) bfalse: ff band: p ∧b q ifthenelse: if then else fi 
Lemmas referenced :  assert-inhabited-rat-cube istype-assert inhabited-rat-cube_wf int_seg_wf is-half-interval_wf iff_weakening_uiff assert_wf is-half-cube_wf assert-is-half-cube rational-cube_wf istype-nat qle_wf qle-qavg-iff-1 qavg_wf qavg-qle-iff-1 bor_wf qeq_wf2 bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert-qeq bfalse_wf equal_wf rationals_wf q_le_wf assert-q_le-eq iff_weakening_equal iff_transitivity assert_of_bor assert_of_band
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis productElimination independent_isectElimination dependent_functionElimination hypothesisEquality applyEquality inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule functionIsType universeIsType natural_numberEquality setElimination rename functionEquality unionElimination promote_hyp hyp_replacement applyLambdaEquality unionIsType productIsType instantiate cumulativity unionEquality productEquality isect_memberEquality_alt inlFormation_alt inrFormation_alt

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b:\mBbbQ{}Cube(k).    ((\muparrow{}is-half-cube(k;a;b))  {}\mRightarrow{}  (\muparrow{}Inhabited(a)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}Inhabited(b)))



Date html generated: 2020_05_20-AM-09_20_13
Last ObjectModification: 2019_11_01-PM-10_54_15

Theory : rationals


Home Index