Nuprl Lemma : q-rel-decider_wf

r:ℤ. ∀x:ℚ.  (q-rel-decider(r;x) ∈ Dec(q-rel(r;x)))


Proof




Definitions occuring in Statement :  q-rel-decider: q-rel-decider(r;x) q-rel: q-rel(r;x) rationals: decidable: Dec(P) all: x:A. B[x] member: t ∈ T int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T q-rel-decider: q-rel-decider(r;x) q-rel: q-rel(r;x) uall: [x:A]. B[x] implies:  Q exposed-btrue: exposed-btrue bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  band: p ∧b q bnot: ¬bb bfalse: ff decidable: Dec(P) not: ¬A or: P ∨ Q subtype_rel: A ⊆B exposed-it: exposed-it bor: p ∨bq prop: exists: x:A. B[x] sq_type: SQType(T) guard: {T} assert: b false: False satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int qeq_wf2 assert-qeq equal-wf-base-T rationals_wf false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bor_wf qpositive_wf bfalse_wf assert-qpositive satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf qless_wf int-subtype-rationals neg_assert_of_eq_int qle_witness qle_weakening_eq_qorder qle_weakening_lt_qorder qless_complement_qorder qle_antisymmetry qless_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule because_Cache applyEquality inlEquality axiomEquality functionEquality baseClosed dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll inrEquality

Latex:
\mforall{}r:\mBbbZ{}.  \mforall{}x:\mBbbQ{}.    (q-rel-decider(r;x)  \mmember{}  Dec(q-rel(r;x)))



Date html generated: 2018_05_22-AM-00_19_02
Last ObjectModification: 2017_07_26-PM-06_53_48

Theory : rationals


Home Index