Nuprl Lemma : q-sat-constraints_wf

[k:ℕ]. ∀[A:(ℚ List × ℤ × (ℚ List)) List]. ∀[y:ℚ List].  (q-sat-constraints(k;A;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  q-sat-constraints: q-sat-constraints(k;A;y) rationals: list: List nat: uall: [x:A]. B[x] prop: member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q-sat-constraints: q-sat-constraints(k;A;y) prop: cand: c∧ B nat: so_lambda: λ2x.t[x] all: x:A. B[x] spreadn: spread3 implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  equal_wf length_wf rationals_wf l_all_wf2 list_wf l_member_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int q-linear_wf select?_wf int-subtype-rationals nat_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int qle_wf qless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis hypothesisEquality setElimination rename because_Cache lambdaEquality lambdaFormation productElimination independent_pairEquality natural_numberEquality unionElimination equalityElimination independent_isectElimination applyEquality dependent_functionElimination equalityTransitivity equalitySymmetry dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp instantiate cumulativity independent_functionElimination setEquality axiomEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:(\mBbbQ{}  List  \mtimes{}  \mBbbZ{}  \mtimes{}  (\mBbbQ{}  List))  List].  \mforall{}[y:\mBbbQ{}  List].    (q-sat-constraints(k;A;y)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-AM-00_25_32
Last ObjectModification: 2017_07_26-PM-06_55_55

Theory : rationals


Home Index