Nuprl Lemma : rat-complex-boundary-subdiv
∀k,n:ℕ. ∀K:n-dim-complex.  permutation(ℚCube(k);∂((K)');(∂(K))')
Proof
Definitions occuring in Statement : 
rat-complex-subdiv: (K)', 
rat-complex-boundary: ∂(K), 
rational-cube-complex: n-dim-complex, 
rational-cube: ℚCube(k), 
permutation: permutation(T;L1;L2), 
nat: ℕ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
rat-complex-subdiv: (K)', 
concat: concat(ll), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
map: map(f;as), 
nil: [], 
it: ⋅, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
int_seg: {i..j-}, 
iff: P ⇐⇒ Q, 
rational-cube-complex: n-dim-complex, 
rev_implies: P ⇐ Q, 
in-complex-boundary: in-complex-boundary(k;f;K), 
isOdd: isOdd(n), 
eq_int: (i =z j), 
modulus: a mod n, 
remainder: n rem m, 
length: ||as||, 
bfalse: ff, 
cons: [a / b], 
squash: ↓T, 
l_member: (x ∈ l), 
select: L[n], 
nat_plus: ℕ+, 
rat-cube-dimension: dim(c), 
exists!: ∃!x:T. P[x], 
sq_stable: SqStable(P), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
has-interior-point: has-interior-point(k;c;a), 
rat-point-in-cube: rat-point-in-cube(k;x;c), 
rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a), 
rev_uimplies: rev_uimplies(P;Q), 
compatible-rat-cubes: Compatible(c;d), 
set-equal: set-equal(T;x;y), 
l_all: (∀x∈L.P[x]), 
lelt: i ≤ j < k
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
rational-cube-complex_wf, 
istype-nat, 
rat-complex-subdiv_wf, 
istype-void, 
istype-le, 
set_subtype_base, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
subtype_rel_self, 
nat_wf, 
le_wf, 
permutation-nil, 
rational-cube_wf, 
rat-complex-boundary-0-dim, 
equal-rat-cube-complexes, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rat-complex-boundary_wf, 
assert_elim, 
inhabited-rat-cube_wf, 
bool_wf, 
bool_subtype_base, 
istype-assert, 
rat-cube-dimension_wf, 
lelt_wf, 
in-complex-boundary_wf, 
is-half-cube_wf, 
l_member_wf, 
member-rat-complex-boundary-n, 
member-rat-complex-subdiv2, 
filter_wf5, 
is-rat-cube-face_wf, 
list-cases, 
product_subtype_list, 
length_of_cons_lemma, 
squash_wf, 
true_wf, 
list_wf, 
istype-universe, 
iff_weakening_equal, 
add_nat_plus, 
length_wf_nat, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
length_wf, 
select_wf, 
member_filter, 
iff_weakening_uiff, 
assert_wf, 
rat-cube-face_wf, 
assert-is-rat-cube-face, 
isOdd_wf, 
l_all_iff, 
equal-wf-base, 
equal_wf, 
bool_cases, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
half-cube-dimension, 
extend-half-cube-face, 
inhabited-rat-cube-face, 
no_repeats_filter, 
sq_stable__no_repeats, 
no_repeats-length-equal-by-relation, 
l_all_wf2, 
l_exists_wf, 
same-half-cube-of-compatible, 
sq_stable__compatible-rat-cubes, 
pairwise-iff, 
compatible-rat-cubes_wf, 
compatible-rat-cubes-symm, 
compatible-rat-cubes-refl, 
has-interior-point-implies, 
l_exists_iff, 
face-of-half-cube, 
half-cube-of-face, 
assert_functionality_wrt_uiff, 
decidable__equal_rc, 
rat-point-in-face, 
rat-point-in-half-cube, 
int_seg_wf, 
rat-point-in-intersection, 
inhabited-rat-cube-iff-point, 
rat-cube-intersection_wf, 
rat-point-in-cube_wf, 
rat-point-in-cube-interior-not-in-face, 
rat-cube-face-dimension-equal, 
set-equal-no_repeats-length, 
cons_wf, 
nil_wf, 
no_repeats_cons, 
no_repeats_singleton, 
member_singleton, 
cons_member, 
length_of_nil_lemma, 
l_exists_filter, 
l_all_filter_iff, 
sq_stable__all, 
sq_stable__assert, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
universeIsType, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
productElimination, 
setIsType, 
productIsType, 
equalityIstype, 
minusEquality, 
addEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
promote_hyp, 
hypothesis_subsumption, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
hyp_replacement, 
functionIsType, 
productEquality, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
functionIsTypeImplies
Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.    permutation(\mBbbQ{}Cube(k);\mpartial{}((K)');(\mpartial{}(K))')
Date html generated:
2020_05_20-AM-09_24_03
Last ObjectModification:
2019_11_02-PM-07_28_27
Theory : rationals
Home
Index