Nuprl Lemma : omral_fma_wf2

g:OCMon. ∀a:CDRng.  (omral_fma(g;a) ∈ FMonAlg(g;a))


Proof




Definitions occuring in Statement :  omral_fma: omral_fma(g;a) fmonalg: FMonAlg(g;a) all: x:A. B[x] member: t ∈ T cdrng: CDRng ocmon: OCMon
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T fmonalg: FMonAlg(g;a) and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng algebra: algebra{i:l}(A) module: A-Module subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] monoid_hom: MonHom(M1,M2) mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) rng_of_alg: a↓rg rng_car: |r| so_apply: x[s] monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) omral_fma: omral_fma(g;a) fma_alg: f.alg fma_inj: f.inj pi2: snd(t) grp_op: * rng_times: * omral_alg: omral_alg(g;r) alg_car: a.car alg_times: a.times infix_ap: y grp_id: e rng_one: 1 alg_one: a.one omral_one: 11 uni_sat: !x:T. Q[x] fma_umap: f.umap implies:  Q alg_hom_p: alg_hom_p(a; m; n; f) algebra_hom: algebra_hom(A; M; N) module_hom: module_hom(A; M; N) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp tlambda: λx:T. b[x]
Lemmas referenced :  omral_fma_wf monoid_hom_wf mul_mon_of_rng_wf rng_of_alg_wf rng_car_wf algebra_wf monoid_hom_p_wf fma_alg_wf fma_inj_wf all_wf uni_sat_wf alg_car_wf fma_umap_wf grp_car_wf alg_hom_p_wf equal_wf compose_wf cdrng_wf ocmon_wf omral_inj_mon_op omral_one_wf omral_alg_umap_is_hom omral_alg_umap_tri_comm omral_alg_umap_unique module_hom_p_wf omral_alg_wf fun_thru_2op_wf alg_times_wf alg_one_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut dependent_set_memberEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_pairFormation isectElimination setElimination rename productEquality because_Cache applyEquality sqequalRule lambdaEquality cumulativity universeEquality instantiate functionEquality functionExtensionality isect_memberFormation isect_memberEquality axiomEquality productElimination equalityTransitivity equalitySymmetry addLevel levelHypothesis independent_functionElimination

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.    (omral\_fma(g;a)  \mmember{}  FMonAlg(g;a))



Date html generated: 2017_10_01-AM-10_07_44
Last ObjectModification: 2017_03_03-PM-01_17_30

Theory : polynom_3


Home Index