Nuprl Lemma : omral_alg_umap_tri_comm

g:OCMon. ∀a:CDRng. ∀n:algebra{i:l}(a). ∀f:|g| ⟶ n.car.  ((alg_umap(n,f) k.inj(k,1))) f ∈ (|g| ⟶ n.car))


Proof




Definitions occuring in Statement :  omral_alg_umap: alg_umap(n,f) omral_inj: inj(k,v) algebra: algebra{i:l}(A) alg_car: a.car compose: g all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T cdrng: CDRng rng_one: 1 ocmon: OCMon grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] omral_alg_umap: alg_umap(n,f) compose: g omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) tlambda: λx:T. b[x] member: t ∈ T uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng algebra: algebra{i:l}(A) module: A-Module squash: T prop: subtype_rel: A ⊆B omon: OMon so_lambda: λ2x.t[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B rng_of_alg: a↓rg rng_car: |r| grp_car: |g| dset: DSet exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A loset: LOSet poset: POSet{i} qoset: QOSet finite_set: FiniteSet{s} true: True iff: ⇐⇒ Q rev_implies:  Q rng_mssum: rng_mssum top: Top rng_zero: 0 abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  grp_car_wf alg_car_wf rng_car_wf algebra_wf cdrng_wf ocmon_wf equal_wf squash_wf true_wf rng_mssum_functionality_wrt_equal oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf rng_of_alg_wf2 set_car_wf dset_of_mon_wf0 add_grp_of_rng_wf rng_of_alg_wf alg_act_wf lookup_wf oset_of_ocmon_wf0 rng_zero_wf omral_inj_wf rng_one_wf omralist_wf dset_wf omral_dom_wf rng_eq_wf assert_of_rng_eq cdrng_subtype_drng null_mset_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot mset_inj_wf loset_wf omral_dom_inj finite_set_wf mset_mem_wf iff_weakening_equal uiff_transitivity equal-wf-T-base mset_for_null_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff assert_of_bnot module_over_triv_rng mset_for_mset_inj add_grp_of_rng_wf_b grp_sig_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf lookup_omral_inj mon_when_true assert_of_mon_eq abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf dmon_wf module_action_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis functionEquality dependent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate because_Cache productEquality unionElimination equalityElimination productElimination independent_isectElimination independent_functionElimination setEquality independent_pairFormation dependent_pairFormation promote_hyp cumulativity voidElimination natural_numberEquality imageMemberEquality baseClosed isect_memberEquality voidEquality impliesFunctionality

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.  \mforall{}n:algebra\{i:l\}(a).  \mforall{}f:|g|  {}\mrightarrow{}  n.car.    ((alg\_umap(n,f)  o  (\mlambda{}k.inj(k,1)))  =  f)



Date html generated: 2017_10_01-AM-10_07_36
Last ObjectModification: 2017_03_03-PM-01_16_56

Theory : polynom_3


Home Index