Nuprl Lemma : omral_alg_umap_unique

g:OCMon. ∀a:CDRng. ∀n:algebra{i:l}(a). ∀f:|g| ⟶ n.car. ∀f':algebra_hom(a; omral_alg(g;a); n).
  (((f' k:|g|. inj(k,1))) f ∈ (|g| ⟶ n.car))  (f' alg_umap(n,f) ∈ (|omral(g;a)| ⟶ n.car)))


Proof




Definitions occuring in Statement :  omral_alg_umap: alg_umap(n,f) omral_alg: omral_alg(g;r) omral_inj: inj(k,v) omralist: omral(g;r) algebra_hom: algebra_hom(A; M; N) algebra: algebra{i:l}(A) alg_car: a.car compose: g tlambda: λx:T. b[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T cdrng: CDRng rng_one: 1 ocmon: OCMon grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng algebra: algebra{i:l}(A) module: A-Module subtype_rel: A ⊆B algebra_hom: algebra_hom(A; M; N) module_hom: module_hom(A; M; N) and: P ∧ Q omral_alg: omral_alg(g;r) alg_car: a.car pi1: fst(t) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| tlambda: λx:T. b[x] omral_alg_umap: alg_umap(n,f) squash: T omon: OMon so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B rng_of_alg: a↓rg rng_car: |r| dset: DSet true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q compose: g rng_mssum: rng_mssum grp_of_module: m↓grp abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid calgebra: CAlg(A) monoid_hom: MonHom(M1,M2) fun_thru_2op: FunThru2op(A;B;opa;opb;f) module_hom_p: module_hom_p(a; m; n; f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) alg_act: a.act
Lemmas referenced :  equal_wf grp_car_wf alg_car_wf rng_car_wf compose_wf set_car_wf omralist_wf omral_inj_wf rng_one_wf algebra_hom_wf omral_alg_wf algebra_wf cdrng_wf ocmon_wf squash_wf true_wf rng_mssum_functionality_wrt_equal oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf rng_of_alg_wf2 dset_of_mon_wf0 add_grp_of_rng_wf rng_of_alg_wf alg_act_wf lookup_wf oset_of_ocmon_wf0 rng_zero_wf dset_wf omral_dom_wf mset_mem_wf iff_weakening_equal module_hom_action grp_of_module_wf2 grp_sig_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf mset_for_functionality grp_of_module_wf dist_hom_over_mset_for omral_alg_wf2 calgebra_wf algebra_hom_properties module_hom_properties module_hom_is_grp_hom monoid_hom_p_wf omral_action_wf rng_times_wf omral_action_inj rng_times_one omral_fact_a
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality because_Cache hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality setElimination rename dependent_functionElimination hypothesisEquality applyEquality sqequalRule productElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity unionElimination equalityElimination independent_isectElimination independent_functionElimination setEquality independent_pairFormation natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality dependent_set_memberEquality isect_memberFormation isect_memberEquality axiomEquality

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.  \mforall{}n:algebra\{i:l\}(a).  \mforall{}f:|g|  {}\mrightarrow{}  n.car.  \mforall{}f':algebra\_hom(a;  omral\_alg(g;a);  n).
    (((f'  o  (\mlambda{}k:|g|.  inj(k,1)))  =  f)  {}\mRightarrow{}  (f'  =  alg\_umap(n,f)))



Date html generated: 2017_10_01-AM-10_07_41
Last ObjectModification: 2017_03_03-PM-01_17_35

Theory : polynom_3


Home Index