Nuprl Lemma : omral_alg_wf2

g:OCMon. ∀r:CDRng.  (omral_alg(g;r) ∈ CAlg(r))


Proof




Definitions occuring in Statement :  omral_alg: omral_alg(g;r) calgebra: CAlg(A) all: x:A. B[x] member: t ∈ T cdrng: CDRng ocmon: OCMon
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T calgebra: CAlg(A) algebra: algebra{i:l}(A) module: A-Module and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] cdrng: CDRng crng: CRng rng: Rng prop: so_lambda: λ2x.t[x] so_apply: x[s] grp_car: |g| pi1: fst(t) add_grp_of_rng: r↓+gp rng_car: |r| grp_eq: =b pi2: snd(t) rng_eq: =b abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon subtype_rel: A ⊆B ocmon: OCMon omon: OMon abmonoid: AbMon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y oal_grp: oal_grp(s;g) grp_op: * grp_id: e grp_inv: ~ omral_alg: omral_alg(g;r) alg_car: a.car alg_plus: a.plus alg_zero: a.zero alg_minus: a.minus omral_minus: --ps omral_zero: 00g,r omral_plus: ps ++ qs omralist: omral(g;r) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) oset_of_ocmon: g↓oset comm: Comm(T;op) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t dset_of_mon: g↓set action_p: IsAction(A;x;e;S;f) inverse: Inverse(T;op;id;inv) ident: Ident(T;op;id) assoc: Assoc(T;op) alg_act: a.act bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) dset: DSet alg_times: a.times alg_one: a.one dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
Lemmas referenced :  group_p_wf alg_car_wf rng_car_wf alg_plus_wf alg_zero_wf alg_minus_wf comm_wf action_p_wf rng_times_wf rng_one_wf alg_act_wf bilinear_p_wf rng_plus_wf monoid_p_wf alg_times_wf alg_one_wf bilinear_wf all_wf dist_1op_2op_lr_wf cdrng_wf ocmon_wf omral_alg_wf cdrng_properties add_grp_of_rng_wf_b eqfun_p_wf grp_car_wf grp_eq_wf oal_grp_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf grp_properties mon_properties omral_plus_comm omral_action_times omral_action_one omral_action_plus_l set_car_wf omralist_wf dset_wf omral_action_plus_r omral_times_assoc omral_times_ident_r omral_times_ident_l omral_bilinear omral_action_times_r1 omral_action_times_r2 omral_times_comm_a
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut dependent_set_memberEquality independent_pairFormation hypothesis productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination setElimination rename because_Cache hypothesisEquality sqequalRule lambdaEquality applyEquality instantiate cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality applyLambdaEquality isect_memberFormation isect_memberEquality axiomEquality independent_pairEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.    (omral\_alg(g;r)  \mmember{}  CAlg(r))



Date html generated: 2017_10_01-AM-10_07_14
Last ObjectModification: 2017_03_03-PM-01_16_29

Theory : polynom_3


Home Index