Nuprl Lemma : omral_times_ident_l

g:OCMon. ∀r:CDRng. ∀ps:|omral(g;r)|.  ((11 ** ps) ps ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_one: 11 omral_times: ps ** qs omralist: omral(g;r) all: x:A. B[x] equal: t ∈ T cdrng: CDRng ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet omral_one: 11 ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng implies:  Q squash: T prop: omon: OMon and: P ∧ Q so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a grp_car: |g| pi1: fst(t) set_car: |p| oset_of_ocmon: g↓oset dset_of_mon: g↓set rng_car: |r| add_grp_of_rng: r↓+gp omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t grp_id: e pi2: snd(t) finite_set: FiniteSet{s} guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff not: ¬A false: False top: Top rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P) or: P ∨ Q set_eq: =b rng_when: rng_when
Lemmas referenced :  set_car_wf omralist_wf dset_wf cdrng_wf ocmon_wf omral_lookups_same_a omral_times_wf2 omral_inj_wf grp_id_wf rng_one_wf grp_car_wf equal_wf squash_wf true_wf rng_car_wf lookup_omral_times mset_for_functionality oset_of_ocmon_wf ulinorder_wf assert_wf grp_le_wf bool_wf grp_eq_wf band_wf add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_op_wf inverse_wf grp_inv_wf comm_wf set_wf mset_for_wf ocmon_subtype_omon rng_when_wf infix_ap_wf oset_of_ocmon_wf0 subtype_rel_self dset_of_mon_wf0 add_grp_of_rng_wf rng_times_wf lookup_wf rng_zero_wf omral_dom_wf ifthenelse_wf rng_eq_wf mset_wf null_mset_wf mset_inj_wf omral_dom_inj finite_set_wf qoset_subtype_dset poset_subtype_qoset loset_subtype_poset subtype_rel_transitivity loset_wf poset_wf qoset_wf mset_mem_wf iff_weakening_equal uiff_transitivity equal-wf-T-base eqtt_to_assert assert_of_rng_eq cdrng_subtype_drng iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot mset_for_null_lemma ring_triv mset_for_mset_inj rng_wf mon_ident iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid ocmon_subtype_abdmonoid abdmonoid_wf abmonoid_wf iabmonoid_wf imon_wf mon_when_wf add_grp_of_rng_wf_a lookup_omral_inj mon_when_true assert_of_mon_eq abdmonoid_dmon dmon_wf rng_times_one decidable__assert omral_dom_wf2 fset_for_when_eq mset_for_when_none assert_functionality_wrt_uiff assert_elim and_wf not_assert_elim btrue_neq_bfalse lookup_omral_eq_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule independent_functionElimination because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality productElimination productEquality functionEquality instantiate setEquality cumulativity independent_isectElimination natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination independent_pairFormation impliesFunctionality voidElimination isect_memberEquality voidEquality addLevel levelHypothesis applyLambdaEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps:|omral(g;r)|.    ((11  **  ps)  =  ps)



Date html generated: 2018_05_22-AM-07_47_10
Last ObjectModification: 2018_05_19-AM-08_28_42

Theory : polynom_3


Home Index