Nuprl Lemma : omral_bilinear

g:OCMon. ∀a:CDRng.  BiLinear(|omral(g;a)|;λps,qs. (ps ++ qs);λps,qs. (ps ** qs))


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omral_plus: ps ++ qs omralist: omral(g;r) all: x:A. B[x] lambda: λx.A[x] cdrng: CDRng ocmon: OCMon set_car: |p| bilinear: BiLinear(T;pl;tm)
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B dset: DSet uimplies: supposing a infix_ap: y implies:  Q ocmon: OCMon abmonoid: AbMon mon: Mon squash: T prop: cdrng: CDRng crng: CRng rng: Rng rng_mssum: rng_mssum omon: OMon so_lambda: λ2x.t[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff so_apply: x[s] cand: c∧ B abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t grp_id: e pi2: snd(t) true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q label: ...$L... t rng_car: |r| mset_for: mset_for mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) omral_dom: dom(ps) oal_dom: dom(ps) mk_mset: mk_mset(as) omral_plus: ps ++ qs oal_merge: ps ++ qs ycomb: Y null: null(as) rev_uimplies: rev_uimplies(P;Q) or: P ∨ Q
Lemmas referenced :  bilinear_comm_elim set_car_wf omralist_wf dset_wf omral_plus_wf2 omral_times_wf2 cdrng_wf ocmon_wf omral_times_comm omral_lookups_same_a grp_car_wf equal_wf squash_wf true_wf rng_car_wf lookup_omral_times rng_mssum_functionality_wrt_equal oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf mset_for_wf add_grp_of_rng_wf_b grp_sig_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf rng_when_wf oset_of_ocmon_wf0 dset_of_mon_wf0 add_grp_of_rng_wf rng_times_wf lookup_wf rng_zero_wf omral_plus_wf list_wf omral_dom_wf rng_mssum_wf rng_plus_wf rng_wf lookup_omral_plus mset_mem_wf iff_weakening_equal mset_union_wf mset_for_dom_shift omral_plus_dom mset_diff_wf lookup_omral_eq_zero assert_functionality_wrt_uiff bnot_wf mset_mem_diff mset_union_wf_f omral_dom_wf2 iff_transitivity not_wf iff_weakening_uiff assert_of_band assert_of_bnot rng_times_zero rng_when_of_zero mem_bsubmset bor_wf fset_mem_union assert_of_bor rng_times_over_plus rng_when_thru_plus rng_mssum_of_plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule because_Cache independent_isectElimination independent_functionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity functionEquality unionElimination equalityElimination productElimination setEquality independent_pairFormation natural_numberEquality imageMemberEquality baseClosed inlFormation inrFormation

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.    BiLinear(|omral(g;a)|;\mlambda{}ps,qs.  (ps  ++  qs);\mlambda{}ps,qs.  (ps  **  qs))



Date html generated: 2017_10_01-AM-10_06_35
Last ObjectModification: 2017_03_03-PM-01_16_15

Theory : polynom_3


Home Index