Nuprl Lemma : omral_alg_umap_is_hom

g:OCMon. ∀a:CDRng. ∀n:algebra{i:l}(a). ∀f:MonHom(g,n↓rg↓xmn).  alg_hom_p(a; omral_alg(g;a); n; alg_umap(n,f))


Proof




Definitions occuring in Statement :  omral_alg_umap: alg_umap(n,f) omral_alg: omral_alg(g;r) alg_hom_p: alg_hom_p(a; m; n; f) algebra: algebra{i:l}(A) rng_of_alg: a↓rg all: x:A. B[x] mul_mon_of_rng: r↓xmn cdrng: CDRng ocmon: OCMon monoid_hom: MonHom(M1,M2)
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B alg_hom_p: alg_hom_p(a; m; n; f) and: P ∧ Q module_hom_p: module_hom_p(a; m; n; f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] cdrng: CDRng crng: CRng rng: Rng fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) ocmon: OCMon abmonoid: AbMon mon: Mon algebra: algebra{i:l}(A) module: A-Module omral_alg: omral_alg(g;r) alg_car: a.car pi1: fst(t) alg_plus: a.plus pi2: snd(t) omral_alg_umap: alg_umap(n,f) tlambda: λx:T. b[x] infix_ap: y squash: T prop: omon: OMon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t oset_of_ocmon: g↓oset dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_id: e grp_car: |g| monoid_hom: MonHom(M1,M2) mul_mon_of_rng: r↓xmn rng_car: |r| rng_of_alg: a↓rg so_apply: x[s] implies:  Q true: True iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  bfalse: ff or: P ∨ Q rng_zero: 0 rev_uimplies: rev_uimplies(P;Q) rng_plus: +r alg_act: a.act rng_mssum: rng_mssum abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid dset: DSet grp_of_module: m↓grp label: ...$L... t mset_for: mset_for mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) omral_dom: dom(ps) oal_dom: dom(ps) mk_mset: mk_mset(as) alg_times: a.times mod_mssum: mod_mssum grp_op: * set_eq: =b rng_times: * alg_one: a.one omral_one: 11 finite_set: FiniteSet{s} not: ¬A false: False top: Top rng_one: 1
Lemmas referenced :  omon_inc ocmon_subtype_omon abdmonoid_dmon ocmon_wf alg_car_wf rng_car_wf omral_alg_wf monoid_hom_wf mul_mon_of_rng_wf rng_of_alg_wf algebra_wf cdrng_wf equal_wf squash_wf true_wf rng_mssum_dom_shift oset_of_ocmon_wf ulinorder_wf grp_car_wf assert_wf grp_le_wf bool_wf grp_eq_wf band_wf qoset_subtype_dset poset_subtype_qoset loset_subtype_poset subtype_rel_transitivity loset_wf poset_wf qoset_wf dset_wf rng_of_alg_wf2 alg_act_wf lookup_wf oset_of_ocmon_wf0 rng_zero_wf omral_plus_wf subtype_rel_self list_wf set_car_wf omral_dom_wf mset_union_wf omral_plus_dom mset_mem_wf mset_diff_wf alg_plus_wf iff_weakening_equal lookup_omral_eq_zero omral_plus_wf2 assert_functionality_wrt_uiff bor_wf bnot_wf mset_mem_diff mset_union_wf_f omral_dom_wf2 fset_mem_union iff_transitivity eqtt_to_assert assert_of_bor or_wf not_wf iff_weakening_uiff assert_of_band assert_of_bnot module_act_zero_l alg_zero_wf mem_bsubmset all_wf rng_mssum_functionality_wrt_equal rng_plus_wf lookup_omral_plus infix_ap_wf rng_mssum_wf dset_of_mon_wf0 add_grp_of_rng_wf mon_subtype_grp_sig dmon_subtype_mon ocmon_subtype_abdmonoid abdmonoid_wf dmon_wf mon_wf grp_sig_wf module_act_plus rng_mssum_of_plus mset_for_functionality_wrt_bsubmset add_grp_of_rng_wf_b subtype_rel_sets monoid_p_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf omral_action_wf omralist_wf omral_dom_action mset_for_wf rng_times_wf lookup_omral_action dist_hom_over_mset_for module_act_is_grp_hom monoid_hom_p_wf module_action_p grp_of_module_wf2 omral_times_wf grp_of_module_wf mset_prod_wf omral_times_dom alg_times_wf omral_times_wf2 mset_prod_wf2 mod_mssum_functionality rng_when_wf lookup_omral_times mod_mssum_wf mon_when_wf mod_action_mssum_r mod_action_when_r mod_mssum_swap imon_wf grp_eq_sym dset_of_mon_wf set_eq_wf fset_for_when_eq prod_in_mset_prod mod_times_mssum_r mod_times_mssum_l monoid_hom_op algebra_act_times_lr omral_inj_wf rng_one_wf ifthenelse_wf rng_eq_wf mset_wf null_mset_wf mset_inj_wf omral_dom_inj finite_set_wf alg_one_wf uiff_transitivity equal-wf-T-base assert_of_rng_eq cdrng_subtype_drng eqff_to_assert mset_for_null_lemma module_over_triv_rng mset_for_mset_inj lookup_omral_inj mon_when_true assert_of_mon_eq monoid_hom_id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule independent_pairFormation isect_memberFormation isectElimination setElimination rename isect_memberEquality axiomEquality because_Cache lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality productElimination productEquality functionEquality instantiate independent_isectElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination inlFormation addLevel allFunctionality impliesFunctionality levelHypothesis allLevelFunctionality impliesLevelFunctionality inrFormation setEquality cumulativity voidElimination voidEquality

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.  \mforall{}n:algebra\{i:l\}(a).  \mforall{}f:MonHom(g,n\mdownarrow{}rg\mdownarrow{}xmn).
    alg\_hom\_p(a;  omral\_alg(g;a);  n;  alg\_umap(n,f))



Date html generated: 2018_05_22-AM-07_47_33
Last ObjectModification: 2018_05_19-AM-08_33_14

Theory : polynom_3


Home Index