Nuprl Lemma : omral_inj_mon_op

g:OCMon. ∀r:CDRng. ∀k,k':|g|.  (inj(k k',1) (inj(k,1) ** inj(k',1)) ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omral_inj: inj(k,v) omralist: omral(g;r) infix_ap: y all: x:A. B[x] equal: t ∈ T cdrng: CDRng rng_one: 1 ocmon: OCMon grp_op: * grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T infix_ap: y uall: [x:A]. B[x] ocmon: OCMon abmonoid: AbMon mon: Mon cdrng: CDRng crng: CRng rng: Rng implies:  Q subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a squash: T omon: OMon and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| dset: DSet rng_car: |r| true: True iff: ⇐⇒ Q rev_implies:  Q rng_when: rng_when rng_mssum: rng_mssum bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A finite_set: FiniteSet{s} top: Top rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  omral_lookups_same_a omral_inj_wf grp_op_wf rng_one_wf omral_times_wf2 cdrng_is_abdmonoid add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf cdrng_wf ocmon_wf equal_wf squash_wf true_wf rng_car_wf lookup_omral_inj lookup_omral_times mset_for_functionality oset_of_ocmon_wf ulinorder_wf assert_wf grp_le_wf bool_wf grp_eq_wf band_wf qoset_subtype_dset poset_subtype_qoset loset_subtype_poset subtype_rel_transitivity loset_wf poset_wf qoset_wf dset_wf mset_for_wf rng_when_wf rng_times_wf lookup_wf oset_of_ocmon_wf0 rng_zero_wf set_car_wf omralist_wf subtype_rel_self add_grp_of_rng_wf omral_dom_wf mon_when_wf add_grp_of_rng_wf_a rng_wf mset_mem_wf iff_weakening_equal rng_mssum_functionality_wrt_equal rng_mssum_wf ocmon_subtype_omon infix_ap_wf rng_eq_wf eqtt_to_assert assert_of_rng_eq cdrng_subtype_drng null_mset_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot mset_inj_wf ifthenelse_wf mset_wf omral_dom_inj finite_set_wf uiff_transitivity equal-wf-T-base iff_transitivity bnot_wf not_wf iff_weakening_uiff assert_of_bnot mset_for_null_lemma rng_when_of_zero mset_for_mset_inj imon_wf mon_when_true assert_of_mon_eq abdmonoid_dmon ocmon_subtype_abdmonoid abdmonoid_wf dmon_wf rng_times_one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality isectElimination setElimination rename hypothesis because_Cache independent_functionElimination sqequalRule instantiate setEquality cumulativity lambdaEquality independent_isectElimination imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality productElimination productEquality functionEquality natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination dependent_pairFormation promote_hyp voidElimination independent_pairFormation impliesFunctionality isect_memberEquality voidEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k,k':|g|.    (inj(k  *  k',1)  =  (inj(k,1)  **  inj(k',1)))



Date html generated: 2018_05_22-AM-07_47_15
Last ObjectModification: 2018_05_19-AM-08_29_01

Theory : polynom_3


Home Index