Nuprl Lemma : omral_inj_mon_op
∀g:OCMon. ∀r:CDRng. ∀k,k':|g|.  (inj(k * k',1) = (inj(k,1) ** inj(k',1)) ∈ |omral(g;r)|)
Proof
Definitions occuring in Statement : 
omral_times: ps ** qs, 
omral_inj: inj(k,v), 
omralist: omral(g;r), 
infix_ap: x f y, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
cdrng: CDRng, 
rng_one: 1, 
ocmon: OCMon, 
grp_op: *, 
grp_car: |g|, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
infix_ap: x f y, 
uall: ∀[x:A]. B[x], 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
abgrp: AbGrp, 
grp: Group{i}, 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
squash: ↓T, 
omon: OMon, 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
guard: {T}, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
omralist: omral(g;r), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
dset_list: s List, 
set_prod: s × t, 
add_grp_of_rng: r↓+gp, 
grp_id: e, 
pi2: snd(t), 
grp_car: |g|, 
dset: DSet, 
rng_car: |r|, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rng_when: rng_when, 
rng_mssum: rng_mssum, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
finite_set: FiniteSet{s}, 
top: Top, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
omral_lookups_same_a, 
omral_inj_wf, 
grp_op_wf, 
rng_one_wf, 
omral_times_wf2, 
cdrng_is_abdmonoid, 
add_grp_of_rng_wf_b, 
subtype_rel_sets, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
set_wf, 
cdrng_wf, 
ocmon_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
lookup_omral_inj, 
lookup_omral_times, 
mset_for_functionality, 
oset_of_ocmon_wf, 
ulinorder_wf, 
assert_wf, 
grp_le_wf, 
bool_wf, 
grp_eq_wf, 
band_wf, 
qoset_subtype_dset, 
poset_subtype_qoset, 
loset_subtype_poset, 
subtype_rel_transitivity, 
loset_wf, 
poset_wf, 
qoset_wf, 
dset_wf, 
mset_for_wf, 
rng_when_wf, 
rng_times_wf, 
lookup_wf, 
oset_of_ocmon_wf0, 
rng_zero_wf, 
set_car_wf, 
omralist_wf, 
subtype_rel_self, 
add_grp_of_rng_wf, 
omral_dom_wf, 
mon_when_wf, 
add_grp_of_rng_wf_a, 
rng_wf, 
mset_mem_wf, 
iff_weakening_equal, 
rng_mssum_functionality_wrt_equal, 
rng_mssum_wf, 
ocmon_subtype_omon, 
infix_ap_wf, 
rng_eq_wf, 
eqtt_to_assert, 
assert_of_rng_eq, 
cdrng_subtype_drng, 
null_mset_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
mset_inj_wf, 
ifthenelse_wf, 
mset_wf, 
omral_dom_inj, 
finite_set_wf, 
uiff_transitivity, 
equal-wf-T-base, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
mset_for_null_lemma, 
rng_when_of_zero, 
mset_for_mset_inj, 
imon_wf, 
mon_when_true, 
assert_of_mon_eq, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
abdmonoid_wf, 
dmon_wf, 
rng_times_one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
instantiate, 
setEquality, 
cumulativity, 
lambdaEquality, 
independent_isectElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
productElimination, 
productEquality, 
functionEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k,k':|g|.    (inj(k  *  k',1)  =  (inj(k,1)  **  inj(k',1)))
Date html generated:
2018_05_22-AM-07_47_15
Last ObjectModification:
2018_05_19-AM-08_29_01
Theory : polynom_3
Home
Index